

# Assistance systems



### Remote-controlled assembly and disassembly

- The remote control facilitates the safe assembly and disassembly of the machine.
- -The operator can change position and thus has a better view of collision points.



### Attachment recognition

- The basic machine's control system detects attachments, records their operating hours and optimises oil quantities and pressures.
- Operating parameters and faults are recorded and can be recalled via LiDAT.



### Vibro-assistant

The compaction process for vibro-replacement runs automatically and in compliance with the specified parameters. This ensures consistent quality and simplifies the work process and operation for the driver.



### **Drilling assistant for single pass method** The rope crowd system, rotary drive and the amount of flowing concrete are optimally matched during drilling and subsequent extraction.



#### Ground pressure visualisation

Changes in the leader position or swinging the uppercarriage lead to a shift in the centre of gravity. Centres of gravity, load moments and ground pressure distribution under the crawler are calculated in real time.



### Automatic leader adjustment

The operator can save the leader inclination. At the touch of a button, the leader can be set to the desired inclination at the piling or drilling point for each new working step. This saves time and ensures precise results.



### **Obstacle recognition**

Obstacle recognition enables the timely recognition of unexpected obstacles in the soil when carrying out sheet piling work. This protects both the basic machine and its attachments.



### Assistance systems for Kelly drilling

- -Automatic shake-off function for working tools
- Kelly visualisation
- -Auger filling level display for drilling tools
- Kelly winch with freewheeling and with slack rope monitoring, reduction and limitation
- -Crowd booster

# **Technical description**

| Diesel engine |
|---------------|
| Diesel engine |

| Power rating according to ISO 9249 | 450 kW (603 hp) at 1700 rpm                                                 |
|------------------------------------|-----------------------------------------------------------------------------|
| Engine type                        | Liebherr D 966 A7-05                                                        |
| Fuel tank capacity                 | 625 l with continuous level indicator and reserve<br>warning                |
| Exhaust certification              | EU 2016/1628 Stage V<br>EPA/CARB Tier 4f<br>non-certified emission standard |

### Hydraulic system

| Hydraulic pumps             |                                                        |
|-----------------------------|--------------------------------------------------------|
| for attachments             | 2x 410l/min and 2x 340 l/min                           |
| for kinematics              | 140 l/min                                              |
| Hydraulic oil tank capacity | 770 l                                                  |
| Max. working pressure       | 400 bar                                                |
| Hydraulic oil               | electronic monitoring of all filters                   |
|                             | use of synthetic environmentally friendly oil possible |

### ↑ ▼///▲ Crowd system

| Crowd force  | 165/250 kN (push/pull) |
|--------------|------------------------|
| Travel       | 13.4 m                 |
| Sledge speed | 0-26 m/min             |

#### T TILL Auxiliary winch

- Illustrations showing the types of application (e.g. Kelly drilling, continuous flight auger drilling etc.) are examples only.
 - Weights and transport dimensions can vary with the final configuration of the machine. The figures in this brochure may

include options which are not within the standard scope of supply of the machine.

| Line pull effective                                            | 52 kN (3rd layer) |
|----------------------------------------------------------------|-------------------|
| Swing range                                                    | left 0-180°       |
| Radius                                                         | 900-1830 mm       |
| Rope diameter                                                  | 17 mm             |
| Rope speed                                                     | 0-54 m/min        |
| Max. lifting capacity for loading/<br>unloading of attachments | 78.5 kN           |

#### f **Will** Kelly winch and additional winch (option)

| · · · · · · · · · · · · · · · · · · · |            |
|---------------------------------------|------------|
| Line pull effective                   | 110 kN     |
| Rope diameter                         | 20 mm      |
| Rope speed                            | 0-85 m/min |



| Drive system        | with fixed axial piston hydraulic motors                          |
|---------------------|-------------------------------------------------------------------|
| Crawler side frames | maintenance-free, with hydraulic chain tensioning device          |
| Brake               | hydraulically released, spring-loaded multi-disc holding<br>brake |
| Drive speed         | 0-2.5 km/h                                                        |
| Track force         | 459 kN                                                            |
| Grousers            | Width 700 mm (option 800 mm)                                      |

### C Swing gear

**Remarks:** 

| Drive system | with fixed axial piston hydraulic motors, planetary<br>gearbox, pinion |
|--------------|------------------------------------------------------------------------|
| Swing ring   | single row ball bearing with internal teeth and one swing drive        |
| Brake        | hydraulically released, spring-loaded multi-disc holding<br>brake      |
| Swing speed  | 0-3.4 rpm continuously variable                                        |

#### 3

# Dimensions

### Standard



### **Operating weights**

| Total weight with 700mm 3-web grousers | t 48.2 |
|----------------------------------------|--------|
| Total weight with 800mm 3-web grousers | t 48.9 |
| · · · ·                                |        |

The operating weight includes the basic machine LRB 19 (ready for operation – including 20% filling of diesel tank) with 8t counterweight, without attachment.

### with Kelly winch and additional winch (option)



### **Operating weights**

 Total weight with 700mm 3-web grousers
 t
 50.1

 Total weight with 800mm 3-web grousers
 t
 50.7

The operating weight includes the basic machine LRB 19 (ready for operation – including 20% filling of diesel tank) with 8t counterweight, rear support and additional winch, without attachment.

### **Transport dimensions and weights**





#### **Operating weight**

includes the basic machine LRB 19 (ready for operation – including 20% filling of diesel t 40.2 tank) without Kelly winch and additional winch, without counterweight and attachment.



#### Operating weight with LV 23

includes the basic machine LRB 19 (ready for operation – including 20% filling of diesel tank) t 53.9 with LV 23 and transport frame, 8 t counterweight, without Kelly winch and additional winch.



#### Operating weight with additional winch and rear support

includes the basic machine LRB 19 (ready for operation – including 20% filling of diesel t 50.1 tank) with Kelly winch, additional winch and lower pile guide, 8 t counterweight with rear support, without attachment.



| Basic machine                |   |      |
|------------------------------|---|------|
| Weight without counterweight | t | 29.6 |



t 10.8



### Leader

### Options

| Concrete supply line             | t 0.4 |
|----------------------------------|-------|
| All round platform with railings | t 0.5 |
| Lower pile guide                 | t 0.5 |
| Kelly winch and additional winch | t 1.5 |



Rear counterweight Weight



t 5.0

t 5.0





### Rear counterweight Weight

t 8.0









t 8.0

### Rear counterweight with rear support Weight

**Intermediate slab** Weight

8









| BAT 180.1 |       |
|-----------|-------|
| Neight    | t 5.8 |
|           | (     |

| DBA 140 |  |
|---------|--|
| Weight  |  |





3MA 65

Weight







▲-1050-▶

### Vibrator slim design LV 23 and LV 23 F

| Tiblator otili acolgii Et Eo alla Et Eo I |       |
|-------------------------------------------|-------|
| Weight LV 23                              | t 5.7 |
| Weight LV 23 F                            | t 5.7 |
|                                           |       |

\* LV 23 F





**DHR 110** Transport weight

2200

| t | 5.8 |  |
|---|-----|--|

t 3.1

t 7.4





| Weight incl. 6 t drop weight | t 9.6 |
|------------------------------|-------|
|                              |       |





| BA | 35 |
|----|----|
|    |    |

# Vibrator slim design

### LV 23 and LV 23 F





| Performance data                             |     | LV 23  | LV 23 F |
|----------------------------------------------|-----|--------|---------|
| Static moment                                | kgm | 0-23   | 0-23    |
| Max. frequency                               | rpm | 0-2400 | 0-2400  |
| Max. centrifugal force                       | kN  | 1200   | 1200    |
| Max. peak-to-peak amplitude with 140 t clamp | mm  | 14.3   | 13.9    |
| Total weight with 140t clamp                 | kg  | 5170   | 5170    |
| Dynamic weight including 140 t clamp         | kg  | 3170   | 3260    |
| Max. recommended pile length                 | m   | 18.0   | 17.9    |
| Vibrator width in piling axis                | mm  | 460    | 770     |
| Piling axis                                  | mm  | 900    | 900     |
| Max. pull force                              | kN  | 200    | 200     |

Above pile lengths are based on an X dimension of 500 mm (see above illustration) with clamped pile.

# Hydraulic hammer

H 6



#### Performance data

| Hammer type                  |           | H 6-3  | H 6-4  | H 6-5  | H 6-6  |  |
|------------------------------|-----------|--------|--------|--------|--------|--|
| Drop weight                  | kg        | 3000   | 4000   | 5000   | 6000   |  |
| Max. rated energy            | kNm       | 0-36   | 0-48   | 0-60   | 0-72   |  |
| Blow rate                    | Blows/min | 50-150 | 50-150 | 50-150 | 40-150 |  |
| Max. recommended pile length | m         | 15.5   | 15.5   | 15.5   | 15.5   |  |
| Hammer weight incl.          |           |        |        |        |        |  |
| pile helmet and dolly        | kg        | 6700   | 7700   | 8700   | 9700   |  |

Various pile helmet sizes up to diameters of max. 630 mm for the hammer H 6, or in square design available as standard. Above pile lengths are based on an X dimension of 500 mm (see above illustration) with pile mounted in the hammer. Other pile helmet sizes available on request

### **Pre-drill**

BA 35



#### Performance data

| Rotary drive - torque   | kNm | 0-35 |
|-------------------------|-----|------|
| Rotary drive - speed    | rpm | 0-95 |
| Max. drilling depth     | m   | 17.9 |
| Max. drilling diameter* | mm  | 500  |

Above drilling depth is based on the use of standard tools and an X dimension of 490 mm (see above illustration). \* Other drilling diameters available on request

# Full displacement drilling

### BAT 180.1



#### Performance data

| i oriorinarioo aata                                |     |       |
|----------------------------------------------------|-----|-------|
| Rotary drive - torque                              | kNm | 0-180 |
| Rotary drive - speed                               | rpm | 0-52  |
| Max. drilling depth                                | m   | 17.8  |
| Drilling depth with 6 m Kelly extension            | m   | 23.8  |
| Max. drilling diameter*                            | mm  | 600   |
| Max. pull force (crowd winch and additional winch) | kN  | 360   |
|                                                    |     |       |

Above drilling depths are based on the use of standard tools and an X dimension of 550 mm (see above illustration).

\* Other drilling diameters available on request

# **Continuous flight auger drilling**

### BAT 180.1



### Performance data

| Rotary drive - torque                              | kNm | 0-180 |
|----------------------------------------------------|-----|-------|
| Rotary drive - speed                               | rpm | 0-52  |
| Max. drilling depth                                | m   | 16.2  |
| Drilling depth with 6 m Kelly extension            | m   | 22.2  |
| Max. drilling diameter*                            | mm  | 800   |
| Max. pull force (crowd winch and additional winch) | kN  | 360   |

Above drilling depths take into account an auger cleaner and a dismounted cardan joint.

Above drilling depths are based on the use of standard tools and an X dimension of 900 mm (see above illustration).

\* Other drilling diameters available on request

### **Double rotary drilling**

### DBA 140



#### Performance data

| Rotary drive I - torque                            | kNm | 0-140 |
|----------------------------------------------------|-----|-------|
| Rotary drive I - speed                             | rpm | 0-29  |
| Rotary drive II - torque                           | kNm | 0-70  |
| Rotary drive II - speed                            | rpm | 0-46  |
| Max. drilling diameter*                            | mm  | 800   |
| Max. drilling depth                                | m   | 16.0  |
| Max. pull force (crowd winch and additional winch) | kN  | 360   |

Above drilling depth is based on the use of standard tools and an X dimension of 520 mm (see above illustration).

Due to differences in the max. admissible load capacities, the combinations of drilling depth and drilling diameter may be limited.

\* Other drilling diameters available on request

# Soil mixing

3MA 65



#### Performance data 3MA 65

| Rotary drive - torque                                  | kNm | 0-65    |
|--------------------------------------------------------|-----|---------|
| Rotary drive - speed                                   | rpm | 0-120   |
| Centre-to-centre distance adjustable in steps of 50 mm | mm  | 450-700 |
| Max. mixing depth                                      | m   | 17.6    |
| Max. pull force (crowd winch and additional winch)     | kN  | 360     |
|                                                        |     |         |

Above mixing depth is based on the use of standard tools and an X dimension of 530 mm (see above illustration).

Longitudinal or transverse mounting of the mixing equipment possible



#### Performance data BAT 180.1

| Rotary drive - torque                              | kNm | 0-180 |
|----------------------------------------------------|-----|-------|
| Rotary drive - speed                               | rpm | 0-52  |
| Max. mixing depth                                  | m   | 18.0  |
| Mixing depth with 6 m Kelly extension              | m   | 24.0  |
| Max. mixing diameter*                              | mm  | 1500  |
| Max. pull force (crowd winch and additional winch) | kN  | 360   |

Above mixing depths are based on the use of standard tools and an X dimension of 280 mm (see above illustration).

\* Other mixing diameters available on request

# Kelly drilling

### BAT 180.1



#### Performance data

| Rotary drive - torque                   | kNm | 0-180 |  |
|-----------------------------------------|-----|-------|--|
| Rotary drive - speed                    | rpm | 0-52  |  |
| Max. drilling diameter uncased          | mm  | 1500  |  |
| Max. drilling diameter cased*           | mm  | 1200  |  |
| Max. drilling diameter below the leader | mm  | 2800  |  |
|                                         |     |       |  |

Other drilling diameters available on request

### \* Depending on casing driver configuration

### Technical data Kelly bars

| Model   | Length A [mm] | X [m] | Drilling depth [m] | Weight [t] |
|---------|---------------|-------|--------------------|------------|
| 20/2/18 | 10500         | 7.8   | 18.6               | 3.6        |
| 20/3/15 | 6970          | 11.3  | 15.6               | 3.2        |
| 20/3/18 | 7949          | 10.3  | 18.6               | 3.8        |
| 20/3/21 | 8949          | 9.3   | 21.6               | 4.0        |
| 20/3/24 | 9949          | 8.3   | 24.6               | 4.4        |

\* Installation only possible with assist crane

Above X dimension results from the min. radius and max. height adjustment position

# **Down-the-hole drilling**

### **DHR 110**





| Performance data                                        |              | DHR 110 |  |
|---------------------------------------------------------|--------------|---------|--|
| Rotary drive - torque                                   | kNm          | 0-110   |  |
| Rotary drive - speed                                    | rpm          | 0-69    |  |
| Drilling depth                                          | m            | 17.9    |  |
| Folding function                                        | 0            | 0-90    |  |
| Max. pull force (crowd winch and additional winch)      | kN           | 360     |  |
| Above drilling denth is based on the use of standard to | Y ne hne alc |         |  |

Above drilling depth is based on the use of standard tools and an X dimension of 530 mm (see above illustration).

# Vibrator LV 23 and LV 23 F

With the LV 23 Liebherr provides a powerful and innovative high frequency vibrator for installing and extracting steel sheet piles, steel pipes and other piling elements.

Thanks to the use of state-of-the-art components, the vibrator is particularly easy to maintain.

It is leader-mounted on the LRB series of carrier machines. These deliver the necessary pull and push force through their rope crowd systems.

The high frequency vibrator LV 23 F is specially designed for all common methods of ground improvement. This includes the installation of vibro-replacement columns or vibrated cast-in-place piles. The flexible suspension of the exciter block in the yoke counterbalances the angular errors between piling element and leader, which is unavoidable in this application. This also minimises the loss of performance as well as the wear on all parts.









### **Features**

### Hose guide

- Parallel movement of hose sledge and crowd sledge (positive control)
- -No loosening or overloading of the hoses
- No hose packages and therefore no restriction for sheet piling work



### **Docking station**

- Fully automatic coupling (hydraulic, mechanical and electronic) for easy change of attachments



# **Digital solutions**

Liebherr-Werk Nenzing GmbH has set itself the goal of using digital solutions to network and optimise processes on the jobsite.

In the progression from an experienced machine manufacturer to a full-service provider Liebherr already has a number of digital solutions, which provide substantial support for all those involved in the construction site.







Your jobsite at a glance



Remote support in real time



Monitoring tool for wind conditions and battery status











Data transfer and positioning system







Liebherr-Werk Nenzing GmbH · Dr. Hans Liebherr Str. 1 · 6710 Nenzing, Austria Phone +43 50809 41-473 · foundation.equipment@liebherr.com · www.liebherr.com facebook.com/LiebherrConstruction