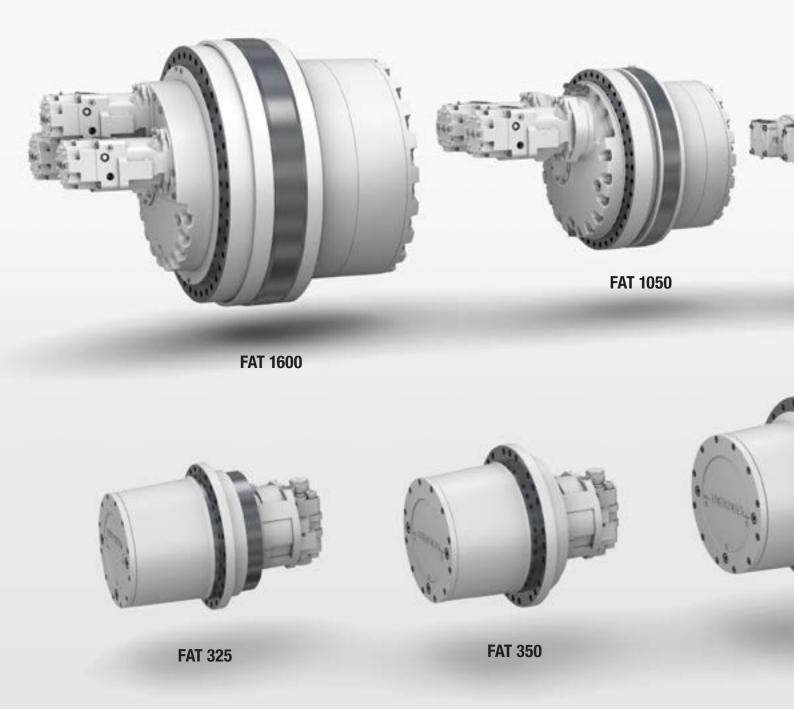
## **Travel Drives by Liebherr**

**Series-production Gearboxes** 




# LIEBHERR

### **Travel drives by Liebherr**

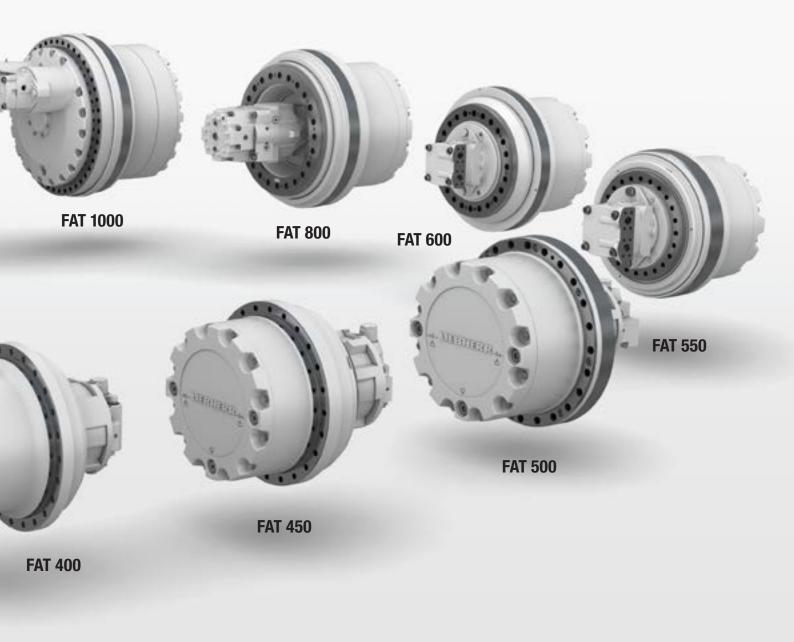
For about 40 years, Liebherr has been developing, designing and producing high-performance, versatile travel drives (FAT) for crawler vehicles such as excavators and cranes. They are characterised by their outstanding quality and excellent reliability. Every year, tens of thousands of planetary gearboxes leave the Liebherr factory in Biberach/Riss (Germany) and Dalian (China) and successfully stand up to the hostile operating conditions in machinery and equipment of customers both inside and outside the company group.

Liebherr offers its customers a series-manufactured range of travel drives that can be used for a wide range of applications. Tailor-made solutions for specific requirements can also be designed.

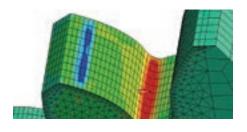
The gearboxes are designed using the very latest development and calculation methods. Extensive testing facilities and an in-house materials laboratory form the basis for ongoing development and even greater improvement. Travel drives from Liebherr have proved their worth in the toughest of environments thanks to their robust design and optimised sealing systems and are especially noteworthy for their high quality and ease of maintenance.



Since the group was established, Liebherr's strategy has been to focus on a high degree of vertical integration. For example, customers can be offered hydraulic and electric motors which are matched to the drives and designed and manufactured at the company's own development and production departments.

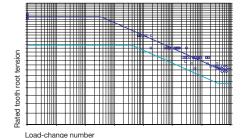

**Product range** 

The series includes 11 gearbox sizes from the FAT 325 to the FAT 1600 in two versions - for crawler excavators or for crawler cranes. The coaxial planetary gearboxes are available as three-stage or four-stage units with a multitude of different gear ratios ranging from i=59 to i=497. Depending on the application and the underlying load collectives, the maximum dynamic output torque is up


to 3,450 kNm. Travel drives are usually driven hydraulically, and the right hydraulic motors from Liebherr are provided in the scope of delivery and are also specified in the overview table. On request, however, they can also be adapted to be driven by electric motors.

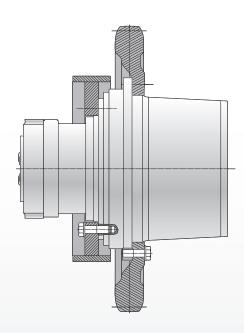
#### Areas of application

- Crawler excavators and other construction machines with crawler running gear
- Crawler cranes as well as construction and special cranes with crawler running gear, e.g. lattice/boom cranes, telescopic cranes
- Mining equipment with crawler running gear, e.g. mining excavators and duty cycle crawler cranes
- · Special machines and devices, e.g. pipeline equipment




### Technical design




#### Gearbox design

The travel drives are calculated and designed on the basis of the usual standards. In addition to the decades of experience in transmission engineering, the designers at Liebherr are also supported in component design by measurements made on the company's own high-frequency pulsator test stands and the torque change devices of the FZG (Gear Research Centre).



#### **Materials**

All torque-conveying gearbox components are made of top-quality case-hardened and tempered steels which are certified to the Liebherr works standards. These standards, which go beyond the currently applicable industrial standards, are based on Liebherr's decades of experience in a broad range of different application areas. The works standards also include 3.1 material certification to DIN EN 10204.



#### Assembly position and output

The gearboxes are designed for horizontal installation. A sprocket wheel fastened to the internal gear wheel of the gearbox transfers the output torque to the chain of the vehicle. The number and pitch circle diameter of the fastening holes for the sprocket wheel and vehicle frame are saved in the dimensions table for every size.

#### **Seals**

Permanent, tried-and-tested sealing systems offer reliable protection against the penetration of dirt and have also proven their worth in the hostile mining environment. They therefore ensure a high service life of the gearbox.

#### **Bearings**

The main bearing of the travel drives is realised in an integral design, in order to guarantee a compact gearbox design. With a reduced number of individual parts and the smallest installation space, it exhibits optimised load ratings for applications in crawler vehicles.



#### **Gearbox structure**

All sun gears and planet wheels are case-hardened and ground. The internal gear wheels are made of high-strength tempered steel, which is also used for the forged planetary supports. Well thought-out construction principles ensure an even load distribution of the individual stages and therefore a high performance density.

In addition, the gearboxes are characterised by an integral design optimised to reduce the number of components to a minimum, thereby also minimising the number of sealing points.

#### **Efficiency**

Liebherr planetary gearboxes have an efficiency of 0.98 per gear stage.

#### Holding brake/parking brake

Gearboxes with hydraulic drive are supplied with an integrated holding brake as standard. The brake is designed as a wet, hydraulically vented spring-operated multidisc brake.

#### **Motor attachment**

Liebherr travel drives are designed for operation with hydraulic motors from Liebherr, with which they form an especially compact unit with optimised efficiency. Thus, the CMVE plug-in motors, including multidisc holding brake and valve brake, are integrated in the travel drive housing. All hydraulic motors specified in the table are intended for the open hydraulic circuit and have a hydraulic two-point adjustment (central hydraulic control, i.e. hydraulic actuated two-point adjustment). Alternatively, motors for the closed circuit and motors with infinitely variable adjustment can also be offered. For more details, see the "Hydraulic pumps and motors from Liebherr" catalogue. In principle, the gearboxes can also be adapted for operation with electric motors, as well as for the installation of motors from other manufacturers.



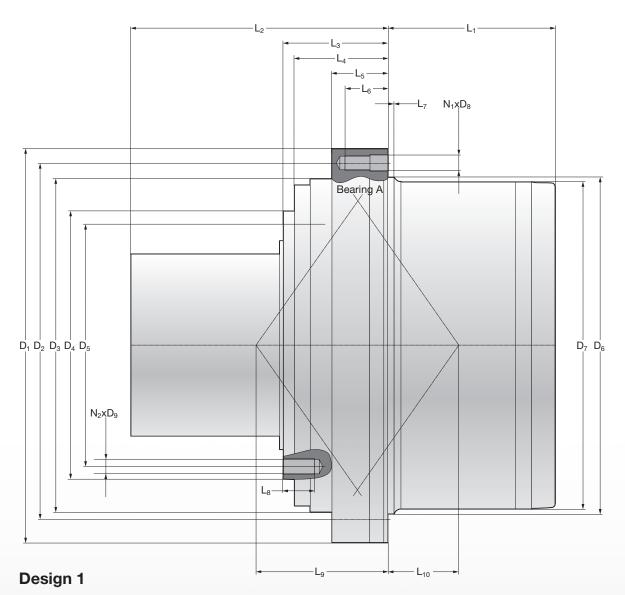
#### Size FAT 1000 to FAT 1600: Drive with multiple hydraulic motors

From size FAT 1000, the travel drives are driven cost-effectively by a spur gear-box with two to three smaller motors instead of one large hydraulic motor. On request, this is also possible for the other sizes.



#### Lubrication

The gearbox components are protected against wear and corrosion by immersion lubrication. The oil change, which is required at regular intervals, is easy to perform thanks to the easily accessible screw plugs.

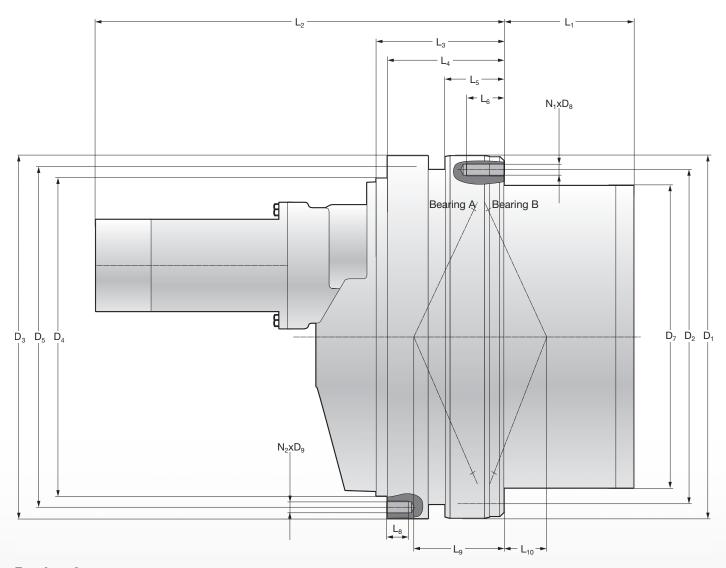

#### Permissible oil temperatures

Liebherr travel drives can be used at ambient temperatures as low as -20°C. The oil temperature must not exceed +90 °C.

On request, gearboxes for lower or higher temperature ranges can also be supplied.



### Sizes and dimensions




|                        | Connection dimensions for the sprocket wheel |                |                |      |                |                |                |                                 |                |                |                |
|------------------------|----------------------------------------------|----------------|----------------|------|----------------|----------------|----------------|---------------------------------|----------------|----------------|----------------|
| Size                   | D <sub>6</sub>                               | D <sub>3</sub> | D <sub>7</sub> | L,   | L <sub>2</sub> | D <sub>2</sub> | D <sub>1</sub> | N <sub>1</sub> x D <sub>8</sub> | L <sub>5</sub> | L <sub>6</sub> | L <sub>7</sub> |
|                        |                                              |                |                |      |                |                | Centre-Ø       |                                 |                |                |                |
|                        | [mm]                                         | [mm]           | [mm]           | [mm] | [mm]           | [mm]           | [mm]           | 1 x [mm]                        | [mm]           | [mm]           | [mm]           |
| FAT 325                | 330                                          | 337            | 300            | 234  | 311            | 360            | 390            | 24 x M16                        | 25             | 25             | 20             |
| FAT 350                | 350                                          | 377            | 327            | 239  | 293            | 400            | 435            | 24 x M20                        | 30             | 30             | 25             |
| FAT 400                | 440                                          | 455            | 375            | 255  | 326            | 480            | 520            | 24 x M20                        | 35             | 35             | 18             |
| FAT 450                | 460                                          | 500            | 454            | 205  | 429            | 500            | 540            | 24 x M20                        | 50             | 35             | 23             |
| FAT 500                | 535                                          | 530            | 520            | 266  | 408            | 580            | 625            | 24 x M24                        | 88             | 68             | 10             |
| FAT 550                | 550                                          | 629            | 540            | 283  | 442            | 600            | 640            | 32 x M24                        | 108            | 88             | 25             |
| FAT 600                |                                              | 660            | 610            | 340  | 464            | 705            | 760            | 30 x M30                        | 112            | 87             |                |
| FAT 800                |                                              | 870            | 740            | 412  | 763            | 835            | 930            | 30 x M30                        | 157.5          | 122.5          |                |
| FAT 1000 <sup>1)</sup> |                                              | 1032           | 860            | 415  | 840            | 940            | 1000           | 45 x M30x2                      | 68             | 90             |                |
| FAT 1050 <sup>1)</sup> |                                              | 1150           | 960            | 412  | 1292           | 1060           | 1150           | 40 x M36x3                      | 185            | 117            |                |
| FAT 1600 <sup>1)</sup> |                                              | 1620           | 1415           | 673  | 1463           | 1590           | 1700           | 40 x M48                        | 320            | 191            |                |

<sup>1)</sup> with spur wheel gear stage

<sup>2)</sup> integrated four-point bearing

<sup>3)</sup> integrated, double-row diagonal cylindrical roller bearing



Design 2

| Connection dimensions for crawler frame |       |                  |                |                |                | Sprocket bearing |                 |                  |                         |                  |                                   |  |
|-----------------------------------------|-------|------------------|----------------|----------------|----------------|------------------|-----------------|------------------|-------------------------|------------------|-----------------------------------|--|
|                                         |       |                  |                |                |                |                  | Bearing spacing |                  | Bearing A <sup>2)</sup> |                  | Bearing A≙Bearing B <sup>3)</sup> |  |
| D <sub>4</sub>                          | $D_5$ | $N_2 \times D_9$ | L <sub>3</sub> | L <sub>4</sub> | L <sub>8</sub> | L <sub>9</sub>   | L <sub>10</sub> | C <sub>dyn</sub> | C <sub>stat</sub>       | C <sub>dyn</sub> | C <sub>stat</sub>                 |  |
| Centre-Ø                                |       |                  |                |                |                |                  |                 |                  |                         |                  |                                   |  |
| [mm]                                    | [mm]  | 1 x [mm]         | [mm]           | [mm]           | [mm]           | [mm]             | [mm]            | [kN]             | [kN]                    | [kN]             | [kN]                              |  |
| 320                                     | 285   | 24 x M16         | 110            | 66             | 24             | 101              | 88              | 353              | 576                     |                  |                                   |  |
| 250                                     | 285   | 20 x M20x1.5     | 107            | 91             | 38             | 106              | 97              | 368              | 629                     |                  |                                   |  |
| 305                                     | 350   | 24 x M20         | 125            | 113            | 30             | 414              | 91              | 460              | 860                     |                  |                                   |  |
| 400                                     | 355   | 24 x M24         | 172            | 134.5          | 53             | 189              | 98              | 501              | 1034                    |                  |                                   |  |
| 425                                     | 385   | 24 x M24         | 166            | 148            | 48             | 276              | 204             |                  |                         | 368              | 771                               |  |
| 470                                     | 410   | 24 x M24         | 227            | 200            | 48             | 308              | 204             |                  |                         | 462              | 938                               |  |
| 590                                     | 500   | 24 x M30         | 220            | 190            | 85             | 332              | 230             |                  |                         | 554              | 1112                              |  |
| 760                                     | 650   | 24 x M36         | 295            | 255            | 74             | 356              | 151             |                  |                         | 1095             | 2109                              |  |
| 880                                     | 940   | 45 x M30x2       | 290            | 260            | 60             | 350              | 230             |                  |                         | 1202             | 2517                              |  |
| 1005                                    | 1080  | 40 x M36x3       | 403            | 368            | 66             | 553              | 323             |                  |                         | 1127             | 2541                              |  |
| 1380                                    | 1500  | 40 x M48         | 622            | 582            | 76             | 753              | 321             |                  |                         | 2754             | 7049                              |  |

### **Quotation request for travel drives**

| Company                              |                              |                   |                                    |              |              |                  |  |  |
|--------------------------------------|------------------------------|-------------------|------------------------------------|--------------|--------------|------------------|--|--|
| Contact person                       |                              |                   | Date                               |              |              |                  |  |  |
| Department                           |                              |                   | Application                        |              |              |                  |  |  |
| Address                              |                              | Equipment / Types | ;                                  |              |              |                  |  |  |
| Telephone                            | Fax                          |                   |                                    |              |              |                  |  |  |
| Email                                |                              |                   | Delivery schedule                  |              |              |                  |  |  |
| Design data                          |                              |                   |                                    |              |              |                  |  |  |
| Operating data                       |                              |                   |                                    |              |              |                  |  |  |
| Application                          |                              | Number of ge      | arboxes N <sub>G</sub>             |              |              |                  |  |  |
| Output torque T <sub>max</sub> [kNm] |                              | Max. chain trac   | ction force F <sub>max</sub> [kN]  |              |              |                  |  |  |
| Required gear ratio i                |                              | Chain efficien    | су                                 |              |              |                  |  |  |
| Max. driving speed v [km/h]          |                              | Sprocket whee     | el diameter d <sub>T</sub> [mm]    |              |              |                  |  |  |
| Radial load [kN]                     |                              | Axial load [kN    | ]                                  |              |              |                  |  |  |
|                                      |                              |                   |                                    |              |              |                  |  |  |
| Design with load collectives         |                              |                   |                                    |              |              |                  |  |  |
| Collective-level                     | Torque T <sub>max</sub> [Nm] |                   | Output speed n <sub>ab</sub> [rpm] |              |              | proportion [%]   |  |  |
| 1                                    |                              |                   |                                    |              |              |                  |  |  |
| 2                                    |                              |                   |                                    |              |              |                  |  |  |
| 3                                    |                              |                   |                                    |              |              |                  |  |  |
| 4                                    |                              |                   |                                    |              |              |                  |  |  |
|                                      |                              |                   |                                    |              |              | 100%             |  |  |
| Required service life [h]            |                              |                   |                                    |              |              |                  |  |  |
|                                      |                              |                   |                                    |              | _            |                  |  |  |
| Motor data                           |                              |                   |                                    |              |              |                  |  |  |
| Hydraulic motor                      |                              | <b>Holding br</b> | ake (hydraulic ı                   | notor)*      |              |                  |  |  |
| Manufacturer                         |                              | Provided in so    | cope of delivery                   | □ Yes        |              | □ No             |  |  |
| Type designation                     |                              | Min. air press    | ure [bar]                          |              |              |                  |  |  |
| Differential pressure [bar]          |                              | Max. air press    | sure [bar]                         |              |              |                  |  |  |
| Absorption current [I/min]           |                              | Max. accumul      | lation pressure [bar]              |              |              |                  |  |  |
| Min. displacement [cm³]              |                              | * Designed as     | a wet, hydraulically               | vented sprin | n-onerated   | multidisc hrake  |  |  |
| Max. displacement [cm³]              |                              | Doorgilou do      | a 170t, irjaidunodily              | - ontou opin | a opolatou i | mandaloo si anoi |  |  |
|                                      |                              |                   |                                    |              |              |                  |  |  |
| Miscellaneous                        |                              |                   |                                    |              |              |                  |  |  |

#### Please send to:

Liebherr-Components AG Postbox 222, CH-5415 Nussbaumen AG Fax +41 56 296 43-01 info.cos@liebherr.com

### Selection of gearbox size

The maximum output torques, as well as the motor data corresponding to the size, can be found in the reference table below.

The maximum output torques in the "Torques" column relate on the one hand to crawler excavators and other devices, which are characterised by high drive ratios in the usage period and must mainly withstand high, dynamic loads.

On the other hand, the output torques are specified for crawler cranes and other devices, which are subjected to predominantly static loads over the usage period.

To select the appropriate gearbox size, the maximum output torque required for the application must be calculated using the device-specific diameter of the sprocket wheel, the efficiency of the chain and the desired number of gearboxes per device. The result is used to select the appropriate gearbox size from the table below.

Calculation of the required maximum output torque from the required chain traction force:

$$T_{max} = \frac{d_T * F_{max}}{2 * \eta * N_G}$$

 $T_{max}$  [Nm] Required max. dyn. output torque [mm] Diameter of the sprocket wheel  $F_{max}$  [kN] Maximum chain traction force of the entire device Efficiency of the chain [-]

 $N_G$ [-] Number of gearboxes per device

| Size     | Torques                                  |                                      | Motor data         |                      |                                    |                                                      |                         |  |  |
|----------|------------------------------------------|--------------------------------------|--------------------|----------------------|------------------------------------|------------------------------------------------------|-------------------------|--|--|
|          | Max. output torque for crawler excavator | Max. output torque for crawler crane | Hydraulic<br>motor | Max.<br>displacement | Min.<br>displacement <sup>1)</sup> | Max.<br>drive speed                                  | Max. operating pressure |  |  |
|          | T <sub>max</sub>                         | T <sub>max</sub>                     |                    | V <sub>g max</sub>   | V <sub>g min</sub>                 | <b>n</b> <sub>max</sub> by <b>V</b> <sub>g min</sub> | $\Delta_{p\;max}$       |  |  |
|          | [kNm]                                    | [kNm]                                |                    | [cm <sup>3</sup> ]   | [cm <sup>3</sup> ]                 | [rpm]                                                | [bar]                   |  |  |
| FAT 325  | 34                                       | 50                                   | CMVE 85            | 85                   | 50                                 | 5,000                                                | 380                     |  |  |
| FAT 350  | 37                                       | 55                                   | CMVE 85            | 85                   | 50                                 | 5,000                                                | 380                     |  |  |
| FAT 400  | 61                                       | 91                                   | CMVE 135           | 135                  | 81                                 | 4,550                                                | 380                     |  |  |
| FAT 450  | 84                                       | 126                                  | CMVE 165           | 165                  | 106                                | 4,200                                                | 380                     |  |  |
| FAT 500  | 105                                      | 157                                  | CMVE 165           | 165                  | 106                                | 4,200                                                | 380                     |  |  |
| FAT 550  | 145                                      | 217                                  | FMV 250            | 256                  | 160                                | 3,640                                                | 380                     |  |  |
| FAT 600  | 220                                      | 330                                  | FMV 250            | 256                  | 160                                | 3,640                                                | 380                     |  |  |
| FAT 800  | 430                                      | 645                                  | DMVA 355           | 355                  | 270                                | 3,000                                                | 380                     |  |  |
| FAT 1000 | 600                                      | 900                                  | 2x FMV 250         | 2x 256               | 2x 160                             | 3,640                                                | 380                     |  |  |
| FAT 1050 | 840                                      | 1260                                 | 2x DMVA 355        | 2x 355               | 2x 270                             | 3,000                                                | 380                     |  |  |
| FAT 1600 | 2300                                     | 3450                                 | 3x DMVA 355        | 3x 355               | 3x 270                             | 3,000                                                | 380                     |  |  |

<sup>1)</sup> The specified values correspond to the preferred series. On request other minimum displacement are available.

### Selection of gear ratios

The gear ratios printed in bold represent the preferred series to which the speeds specified in the "Selection of gearbox size" table relate. Other gear ratios are possible on request.

| Ratios  |         |         |         |         |         |         |         |          |          |          |  |
|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|--|
| FAT 325 | FAT 350 | FAT 400 | FAT 450 | FAT 500 | FAT 550 | FAT 600 | FAT 800 | FAT 1000 | FAT 1050 | FAT 1600 |  |
| 59.76   | 74.13   | 87.29   | 104.19  | 112.98  | 72.68   | 136.37  | 252.64  | 249.80   | 247.02   | 497.00   |  |
| 74.13   | 82.33   | 95.95   | 105.88  | 132.88  | 88.32   | 169.44  |         |          |          |          |  |
| 82.33   | 90.07   | 102.06  | 110.03  | 176.30  | 118.74  | 179.47  |         |          |          |          |  |
| 93.28   | 102.03  | 113.29  | 122.55  |         | 154.08  | 197.69  |         |          |          |          |  |
|         | 113.29  | 149.30  | 208.08  |         | 167.90  | 366.40  |         |          |          |          |  |
|         | 118.75  |         |         |         | 434.21  |         |         |          |          |          |  |
|         | 128.29  |         |         |         |         |         |         |          |          |          |  |

### **Liebherr-Component Technologies**

Liebherr-Component Technologies AG, based in Bulle, Switzerland, is responsible for all activities of the components division of the Liebherr group. The companies and business areas belonging to this division are specialised in the development, design, manufacture and reconditioning of high-performance components in the field of mechanical, hydraulic and electrical drives and control technology. The sale of components to customers outside the Liebherr group of companies is managed centrally by Liebherr-Components AG in Nussbaumen, Switzerland.

#### **Many Years of Experience**

Liebherr has decades of experience in the manufacture of high-quality components used in cranes and construction machines, in the mining industry, maritime applications, wind turbines, in vehicle technology or in aerospace and transportation technology.

#### The Right Solution for Every Need

A high degree of vertical integration and the use of flexible, state-of-the-art production systems allow Liebherr to offer its customers tailor-made solutions. Liebherr is your partner for joint success – from the product idea to development, manufacture and first installation right through to series production. For the various components of the drivetrain, Liebherr also offers remanufacturing in various degrees in a dedicated factory.

#### **System Solutions from a Single Source**

Components from Liebherr are perfectly matched to each other with regard to operation. Depending on the requirement, individual components from the wide product range can be expanded through to the complete drivetrain. This results in impressive system solutions which can be integrated into a variety of applications.

### Highest Quality Standards and Long Service Life

All components meet the very highest demands for functional reliability and durability, even under extreme loads and harsh conditions. Elaborate quality management and extensive analysis and test procedures are practised throughout the entire development and production process, guaranteeing reliability and long component service life.

#### www.liebherr.com



Biberach/Riss (Germany): large diameter bearings, gearboxes, rope winches, switchgear, electronics, electrical machines



Bulle (Switzerland): diesel engines, gas engines, splitter boxes, axial piston units, injection systems



Kirchdorf (Germany): hydraulic cylinders



Lindau (Germany): electronics, power electronics



Ettlingen (Germany): remanufactured components



Monterrey (Mexico): large diameter bearings



Dalian (China): gearboxes