

Durably Stable Power, Strength and Precision

Economy

A Sound Investment – Optimum Economy and Environmentally Friendly

Reliability

Competence, Consistency, Innovation – Proven Experience

Comfort

Ergonomic Excellence – Superior Cabin Design for Operator Comfort and Wellbeing

Maintainability

Service Every Step of the Way – Simple, Fast and Reliable

A 914 Litronic

Operating Weight 14,900 - 17,600 kg Engine 105 kW/143 HP Stage V Tier 4 Final Bucket Capacity 0.17 - 0.87 m³

Performance

Durably Stable Power, Strength and Precision

Liebherr wheeled excavators are designed for maximum productivity. Large grab capacity, high paya loads and rapid working cycles satisfy all the requirements for efficient site operations. A wide range of equipment versions enhances excavator use.

Maximum Performance

Uncompromising Power

The machine concept of the A 914 Litronic has been developed for maximum capacity and flexibility. A powerful conustruction machinery engine and the brilliant coordination of the uppercarriage and undercarriage as well as equipment to counterweight mean that the machine handles superbly in every situation and delivers power and stability at all times.

An individual, job-related range of different equipment and attachments enables the A 914 to adapt perfectly to different areas of work.

Be Faster

Many years of experience in the development and production of hydraulic excavators and systems allow us to harmonise the components perfectly. The result is available to every operator every day: Liebherr hydraulic excavators feature rapid, fluent movements combined with high precision. And these properties are also available when simply driving the machine. The speed and precision of the mad chine can be adjusted using the MODE switch to suit a new task, which also saves fuel.

Precise Work

Working with Precision

The Liebherr joysticks enable the operator to intuitively and sensitively control the Liebherr hydraulic system to complete even the most challenging tasks quickly not just with reduced speed but also with maximum power output. Liebherr has been using an infinitely variable proportional controller with four axes for many years. The slim, ergonome ically designed proportional sensors deliver additional functionality to the classic machine controller without having to reach for additional controls. Typical functions include high and medium pressure movements for attachments, the control of height and sideways-adjustable booms as well as lowering the machine outrigger. The mini-joysticks can also be used to steer the entire machine. Buttons on the joyh sticks, which the operator can configure, deliver additional convenience and functions.

Travel Drive

- High traction for fast acceleration and powerful engine for top speed on hills
- Reduces unproductive travel time between tasks and on the building site
- Faster on site more productive

Digging Force

- High digging and breakout forces
- Continuously high digging performance even in tough ground
- More digging force for faster results

Joystick Steering

- The optional joystick steering function enables the operator to steer the wheeled excavator using the mini-joystick
- Working and travelling movements can be executed simultaneously without having to move hands
- More efficient operation for greater productivity

Economy

A Sound Investment – Optimum Economy and Environmentally Friendly

Liebherr wheeled excavators are machines that combine high productivity with excellent levels of economy – and all this comes as standard from the factory. On request, the efficiency of each wheeled excavator can be boosted further with a Liebherr productive bucket, fuel-saving Liebherr hydraulic oil or a Liebherr quick coupling system, all of which provide more return from each operating hour.

Maximum Efficiency

Fuel Savings from the Latest Generation of Engines

Liebherr uses a sturdy four-cylinder in-line engine in the A 914 Litronic which is powerful, fuel-efficient and reliable. Liebherr has decades of expertise in the research and development of construction machinery engines, which it uses to the full to ensure that these requirements are satisfied. Despite low fuel consumption, the engine does not suffer any reduction in performance. Standard features such as automatic engine shut-down and engine speed adjustment on the joystick increase efficiency even more whilst also protecting the material. An investment that pays dividends immediately.

Fuel Efficiency and Exhaust Emissions Treatment

The robust D924 diesel engine complies with the stringent emissions regulations of Stage V/Tier 4 Final and protects the environment as well as its resources through its low fuel consumption and reduced emissions. Liebherr uses SCRonly technology to comply with Tier 4 Final regulations. A new SCR (selective catalytic reduction) system with an integral particulate filter is used for emissions Stage V. Both systems reduce emissions effectively and do not result in any reduction in power.

Increased Productivity

Faster, More Effective Site Operations

The A 914 packs plenty of power and delivers excellent productivity and economy in operation. Great engine performance, high load capacity and reliable stability with a considerable reach deliver a massive operating radius. The benefit of this is high speed, focused operation without frequent machine adjustments.

Efficient Management

LiDAT, Liebherr's own data transmission and positioning system, facilitates efficient management, monitoring and control of the entire fleet park in terms of machinery data recording, data analysis, fleet management and service. All of the important machinery data can be viewed at any time on a web browser. LiDAT provides you comprehensive work deployment documentation, greater availability thanks to shorter downtimes, faster support from the manufacturer, quicker detection of strain / overload and subsequently a longer service life of the machine as well as greater planning efficiency.

High Resale Value

 High quality materials and quality workmanship ensure lengthy operation whilst retaining the highest possible value

Liebherr Power Efficiency (LPE) System

Low Fuel Consumption Thanks to Intelligent Machine Control

- Liebherr-Power Efficiency (LPE) optimises the interaction of the drive components in terms of efficiency
- LPE enables machine operation in the area of the lowest specific fuel use for less consumption and greater efficiency with the same performance

Liebherr Quick Coupling System LIKUFIX

- Faster and safer changing of mechanical and hydraulic attachments from the operator's cab
- Machine utilisation increased to up to 90% thanks to extended deployment options
- Visual and acoustic check of correct locking position of attachment at quick coupling system by two proximity sensors

Reliability

Competence, Consistency, Innovation – Proven Experience

Reliability offers safety. Safety that significantly influences the success of a project. Whatever the weather, Liebherr stands for safety – with reliable construction machines and customer-oriented sales and service partners. This means a Liebherr construction machine is exactly what it should be: an investment that pays off.

High Machine Availability

Quality and Competence

Our product experience, our understanding of technical design and feedback from customers, sales and service form the basis for the use of pioneering ideas and have always been an integral part of our recipe for success. In addition, Liebherr has been delivering great production depth and system solutions for decades. Key components such as the electronic components, slewing ring, slewing drive and hydraulic cylinders are developed and manufactured inhouse. This great production depth guarantees the highest possible quality and allows the components to be coordinated perfectly.

Robust Construction

All the steel components are designed and manufactured by Liebherr. High strength steel sheets designed to withstand the harshest requirements guarantee high torsion resistance and excellent absorption of forces to ensure a long service life.

Greater Safety

Safety

In addition to the performance and economy of a wheeled excavator, the other main focus is on the safety of personnel and the machine. A wide range of equipment such as pipe fracture safety devices on lifting and stick cylinders, load holding valves on outriggers, lift limitation in height, overload warning device, roll-over protection system (ROPS) and the emergency exit through the rear window deliver maximum safety for every job.

Liebherr Tyres

The twin tyres without an intermediate ring and with offset studs deliver increased stability during operation. In addie tion, the increased tyre pressure ensures that the machine suffers less vibration during travel.

Higher traction on soft ground and lower ground pressure are achieved by the larger footprint of Liebherr tyres. Their self-cleaning properties also prevent heavy contamination of the road surface after just a few metres.

QPDM - Quality and Process Data Management

- QPDM allows production data to be logged, documented and evaluated
- Automation of documentation and test specifications
- Ability to handle large quantities and maintain uniform high quality

Integral Travel Drive Protection

- The travel motor and gearbox are fully integrated in the robust undercarriage frame
- Best possible protection from debris, stones and soil in the event of unwanted ground contact
- Perfect off-road features and massive ground clearance

Maximum Stability

- Various undercarriage versions with securely welded outriggers deliver safe footing, maximum stability and a long service life
- Stabilizer blade in box design; just two bearings deliver high torsion resistance
- Optional piston rod guard for blade and outrigger support

Comfort

Ergonomic Excellence – Superior Cabin Design for Operator Comfort and Wellbeing

The modern Liebherr cab with an air-suspension heated driver's seat and automatic air-conditioning ensures a pleasant atmosphere, thus offering the best conditions for healthy and productive work whilst allowing the driver to work with full concentration. The ergonomic control elements with touchu screen display also simplify the operation of the wheeled excavator. The extensive safety equipment includes the rollover protection system (ROPS) for the cab fitted as standard according to ISO 12117-2.

First-Class Cab

Automatic Air Conditioning

Liebherr fits the A 914 with a standard automatic air conditioning system to ensure operator comfort. The temperay ture, fan setting and the various air vents at head, chest and foot levels can be adjusted through the intuitive operation of the touchscreen. The defrost/defog one-button function clears fogged up windows in the shortest possible time.

Operator Seats

The Standard, Comfort and Premium operator's seat versions deliver maximum comfort. Even the standard operator seat offers an extensive range of features such as air suspension, seat heating, headrest, lumbar support and many more. A luxury which we believe every construction machine should provide.

Smooth Operation

The use of visco-elastic mounts, good noise insulation and modern, smooth Liebherr diesel engines minimise noise emissions and vibrations.

Comfortable Operation

Radio with Hands-Free Device

The optional Liebherr radio is MP3-compatible, has a USB connection and can be used as interface for the integral hands-free kit. If the machine operator connects his smartn phone to the radio using Bluetooth, the touchscreen can be used to control phone calls. This means that all media, including the radio, MP3 or phone calls, are controlled using a central unit which provides greater clarity, simplicity and comfort.

Control Unit

The large touchscreen provides the operator with a fast, uncomplicated interface which delivers all the information required for working with the machine. A flat, intuitive menu system ensures that it can be readily understood so that the control unit can be used in a highly productive way.

Sliding Two-Piece Windscreen

The windscreen can be partially or fully slid into the roof to give an unrestricted view of the work area.

Refuelling

- Using the optional refuelling pump, the machine can be refuelled directly from a fuel container
- An integral tank hose and an automatic shut off when the tank is full deliver greater comfort and short refuelling times
- Topping up simple, quick and safe

Maximum Safety

- More convenient and safer entry and exit in and out of the cab thanks to added width from the folding arm console
- Three entry steps with standard anti-slip galvanised plates provide a boost to safety

Intuitive Operation

- Display of the machine data and camera image on the 7-inch indicating unit with touchscreen and direct access via menu bar
- 20 user-programmable memory slots for attachments, which can be used for quickly and easily setting the oil pressure and oil flow at the push of a button when changing attachments
- Rear and side area monitoring provide optimum visibility of the working area at all times; equipped as standard

Maintainability

Service Every Step of the Way – Simple, Fast and Reliable

Liebherr wheeled excavators are not only powerful, robust, precise and efficient, they also impress with the service-orientated machine design. Maintenance is performed quickly, simply and safely. This reduces maintenance costs and keeps machine downtimes to a minimum.

Simplified Maintenance Concept

Service-Based Machine Design

The service-based machine design guarantees short servicing times, thus minimising maintenance costs due to the time it saves. All the maintenance points are easily accessible from the ground and easy to reach due to the large, wide-opening service doors. The enhanced service concept places the maintenance points close to each other. This means that service work can be completed every more quickly and efficiently.

Hydraulic Oils with Added Value

Liebherr hydraulic oils achieve a service life of 6,000 operating hours plus. Instead of having defined change intere vals, the results of the oil analysis (every 1,000 operating hours or after one year) determine when the oil needs to be changed. The unique Liebherr Hydraulic Plus oil can even achieve a service life of 8,000 operating hours plus at the same time reducing fuel consumption by up to 5%.

Your Competent Service Partner

Remanufacturing

The Liebherr remanufacturing program offers cost-effective reconditioning of components to the highest quality standards. Various reconditioning levels are available including replacement components and general overhaul or repair. The customer receives components with original part quality at a reduced cost.

Competent Advice and Service

Competent advice is a given at Liebherr. Experienced specialist provide advice for your specific requirements: application-oriented sales support, service agreements, cost effective repair alternatives, original parts management, as well as remote data transmission for machine planning and fleet management.

Lubrication During Operation

- Fully automatic central lubrication system for the equipment and swing ring
- Can be expanded to the connecting link and quick coupler
- Lubrication without interrupting work for higher productivity

Excellent Service Access

- Large, wide-opening service doors
- Engine oil, fuel, air and cab air filters are easily and safely accessible from the ground
- The oil level in the hydraulic tank can be checked from the cab
- Standard magnetic rod in the hydraulic tank as reliable service indicator

Rapid Spare Parts Service

- 24-hour delivery: Spare parts service is available for our dealers around the clock
- Electronic spare parts catalogue:
 Fast and reliable selection and ordering via the Liebherr online portal
- With online tracking, the current processing status of your order can be viewed at any time

Wheeled Excavator A 914 Litronic Overview

Ergonomic Operator's Work Station for Maximum Comfort

- High quality operator's seats in a range of versions
- Control console connected to the seat and ergonomic joysticks
- Folding control console, left
- Proportional control with 4-way mini-joystick
- Joystick steering (optional)
- Automatic air-conditioning system
- Information centre 7" large colour touchscreen
- Rear and side monitor
- Convenient radio control with hands-free kit
- Tool Control for attachments
- LED headlights (optional)
- Large windows
- Sliding two-piece windscreen

Excellent Machine Concept for Maximum Reliability

- Robust design made of high strength steel
- Various welded outrigger versions available
- Load holding valves on all outriggers
- Liebherr hydraulic cylinders with standard pipe fracture safety devices for lifting and stick cylinders
- Overload warning device
- Roll-over protection system (ROPS)
- Electronic lift limitation (optional)
- Integral travel drive protection
- Liebherr twin tyres (optional)
- Skyview 360° camera system

Superior Technology for Highest Economy

- Diesel engine with up to date emissions Stage V and Tier 4 Final
- Emissions treatment with Liebherr-SCRT technology (Stage V) / Liebherr-SCR technology (Tier 4 Final)
- Liebherr-Power-Efficiency (LPE) Liebherr's smart engine controller
- Sensor-controlled automatic idling system
- Load-sensing-control
- Liebherr quick coupling system LIKUFIX
- LiDAT Liebherr's information system for the efficient management and evaluation of the fleet

Perfect Combination for Highest Possible Performance

- Powerful 4-cylinder in-line engine with Common-Rail injection system
- Liebherr hydraulic system for high digging and breakout forces with combined, fluid movements
- Flexible configuration of the machine with various equipment and attachment versions and options
- Wide undercarriage measuring 2.75 m (optional)

Simplified Maintenance Concept for Maximum Productivity

- Service-enhanced machine structure with easy access to the maintenance points
- Fully automatic central lubrication system for uppercarriage, slewing ring and equipment
- Liebherr Hydraulic Plus oil with an extended service life of up to 8,000 operating hours
- Highly qualified, experienced trained personnel provide competent care
- 24/7 spare parts service with 24 hour deliveries

Technical Data

105 kW (143 HP) at 1,800 RPM		
103 KW (143 HF) at 1,000 KFH		
D924 - FPT motor designed for Liebherr		
4 cylinder in-line		
104/132 mm		
4.5 l		
4-stroke diesel Common-Rail Turbo-charged and after-cooled Reduced emissions		
Dry-type air cleaner with pre-cleaner, primary and safety elements		
Sensor controlled		
24 V		
2 x 135 Ah/12 V		
Three-phase current 28 V / 140 A		
According to regulation (EU) 2016/1628		
Liebherr-SCRT technology		
250 l		
46 l		
In accordance with 40CFR1039 (EPA) / 13CCR (CARB)		
Liebherr-SCR technology		
250 l		
46 l		

Diesel engine	Water-cooled
	Compact cooling system consisting cooling unit for
	water, hydraulic oil and charge air with stepless thermo-
	statically controlled fan, fans for radiator cleaning can be
	completely folded away

Power distribution	Via control valves with integrated safety valves, simultaneous and independent actuation of chassis, swing drive and equipment			
Servo circuit				
Equipment and swing	With hydraulic pilot control and proportional joystick levers			
Chassis	Electro-proportional via foot pedal			
Additional functions Via switch or electro-proportional foot pedals				
Proportional control	Proportionally acting transmitters on the joysticks for additional hydraulic functions			

Hydraulic System

E ilyulaulic Systelli	
Hydraulic pump	
For equipment and travel drive Max. flow	Liebherr axial piston variable displacement pump 250 l/min.
Max. pressure	350 bar
Hydraulic pump regulation and control	Liebherr-Synchron-Comfort-system (LSC) with electronic engine speed sensing regulation, pressure and flow compensation, torque controlled swing drive priority
Hydraulic tank	130 [
Hydraulic system	Max. 300 l
Hydraulic oil filter	1 main return filter with integrated partial micro filtration (5 μ m)
MODE selection	Adjustment of engine and hydraulic performance via a mode pre-selector to match application, e.g. for espe- cially economical and environmentally friendly operation or for maximum digging performance and heavy-duty jobs
S (Sensitive)	Mode for precision work and lifting through very sensi- tive movements
E (Eco)	Mode for especially economical and environmentally friendly operation
P (Power)	Mode for high performance with low fuel consumption
P+ (Power-Plus)	Mode for highest performance and for very heavy duty applications, suitable for continuous operation
Engine speed and performance setting	Stepless alignment of engine output and hydraulic power via engine speed
Option	Tool Control: 20 pre-adjustable pump flows and pres-

Swing Drive

— Owing Dive	
Drive	Liebherr axial piston motor with integrated brake valve and torque control, Liebherr planetary reduction gear
Swing ring	Liebherr, sealed race ball bearing swing ring, internal teeth
Swing speed	0 - 10.0 RPM stepless
Swing torque	54 kNm
Holding brake	Wet multi-disc (spring applied, pressure released)
Option	Pedal controlled positioning swing brake Slewing gear brake Comfort

Cab	
Cab	ROPS safety cab structure (roll-over protection system) with individual windscreens or featuring a slide-in subpart under the ceiling, work headlights integrated in the ceiling, a door with a sliding window (can be opened on both sides), large stowing and depositing possibilities, shock-absorbing suspension, sound damping insulating, tinted laminated safety glass, separate window shades for the sunroof window and windscreen
Operator's seat Standard	Air cushioned operator's seat with 3D-adjustable arm- rests, headrest, lap belt, seat heater, manual weight adjustment, adjustable seat cushion inclination and length and mechanical lumbar vertebrae support
Operator's seat Comfort (Option)	In addition to operator's seat standard: lockable horizon- tal suspension, automatic weight adjustment, adjustable suspension stiffness, pneumatic lumbar vertebrae sup- port and passive seat climatisation with active coal
Operator's seat Premium (Option)	In addition to operator's seat comfort: active electronic weight adjustment (automatic readjustment), pneumatic low frequency suspension and active seat climatisation with active coal and ventilator
Arm consoles	Joysticks with control consoles and swivel seat, folding left control console
Operation and displays	Large high-resolution operating unit, self-explanatory, colour display with touchscreen, video-compatible, numerous settings, control and monitoring options, e.g. air conditioning control, fuel consumption, machine and attachment parameters
Air-conditioning	Automatic air-conditioning, recirculated air function, fast de-icing and demisting at the press of a button, air vents can be operated via a menu; recirculated air and fresh air filters can be easily replaced and are accessible from the outside; heating-cooling unit, designed for extreme outside temperatures, sensors for solar radiation, inside and outside temperatures (country-dependent)
Refrigerant	R134a
Global warming potential	1,430
Quantity at 25 °C	1,300 g
CO ₂ equivalent	1.859 t
Vibration emission*	
Hand/arm vibrations	< 2.5 m/s ²
Whole-body vibrations	< 0.5 m/s ²
Measuring inaccuracy	According with standard EN 12096:1997

●=● Undercarriage

•=• Ollucicalliage			
Drive	Oversized two speed power shift transmission with additional creeper speed, Liebherr axial piston motor with functional brake valve on both sides		
Pulling force	95 kN		
Travel speed	0 - 3.5 km/h stepless (creeper speed off-road) 0 - 7.0 km/h stepless (off-road) 0 - 13.0 km/h stepless (creeper speed on-road) 0 - 20.0 km/h stepless (road travel) 0 - max. 30.0 or 37.0 km/h Speeder (Option)		
Driving operation	Automotive driving using accelerator pedal, cruise control function: storage of variable accelerator pedal positions, both off-road and on-road		
Axles	Manual or automatic hydraulically controlled front axle oscillation lock		
Service brake	Two circuit travel brake system with accumulator; wet and backlash-free disc brake		
Automatic digging brake	Works automatically when driving off (accelerator pedal actuation) and when the machine is stationary (engagement); the digging brake engages automatically – can be coupled with automatic swing axle lock		
Holding brake	Wet multi-disc (spring applied, pressure released)		
Stabilization	Rear stabilizer blade (adjustable during travel for dozing) Rear outriggers + front stabilizer blade Rear + front stabilizer blade		
Option	EW-undercarriage 2.75 m / 9'		

Equipment

-4a.b	
Туре	High-strength steel plates at highly-stressed points for the toughest requirements. Complex and stable mount- ings of equipment and cylinders
Hydraulic cylinders	Liebherr cylinders with special sealing and guide system and, depending on cylinder type, shock absorption
Bearings	Sealed, low maintenance

Liebherr central lubrication system for uppercarriage and equipment, automatically Lubrication Noise emission ISO 6396 2000/14/EC 71 dB(A) = L_{pA} (inside cab) 100 dB(A) = L_{WA} (surround noise)

 $^{^{\}ast}$ for risk assessment according to 2002/44/EC see ISO/TR 25398:2006

Dimensions

	mm
A	2,525
В	2,550
B*	2,750
B1	3,695
B2	2,550
B2*	2,750
C	3,165
D	2,120
E	2,160
H	2,610
12	420
15	380
J2	605
J5	585
K	1,230
L	2,540
M	1,100
M1	1,440
Q	350
TI	1,047
T2	1,230
T5	1,155
U2	4,575
U5	4,745
	.,

* EW-undercarriage
E = Tail radius
Tyres 10 00-20

	Stick	Two-piece boom 4.85 m		Mono boom 4.60 m	
		Rear blade	Rear outriggers + front blade	Rear blade	Rear outriggers + front blade
	m	mm	mm	mm	mm
٧	2.05	5,950	5,750	5,450	5,300
	2.25	5,650	5,500	5,100	4,950
	2.45	5,250	5,100	5,500	5,350*
	2.65	5,300*	5,650*	5,8501)	5,7001)
W	2.05	2,950	2,950	3,000	3,000
	2.25	2,900	2,900	2,900	2,900
	2.45	2,800	2,800	3,250	3,250*
	2.65	3,050*	3,050*	3,1501)	3,1501)
Χ	2.05	8,250	8,100	8,000	7,800
	2.25	8,250	8,100	7,950	7,800
	2.45	8,250	8,100	8,000	8,200*
	2.65	8,200*	8,550*	8,0001)	7,8501)

	Stick	Offset two-piece boom 4.90 m		Offset mono boom 4.30 m	
		Rear blade	Rear outriggers + front blade	Rear blade	Rear outriggers + front blade
	m	mm	mm	mm	mm
٧	2.05	6,450	6,300	5,800	5,650
	2.25	5,950	5,800	5,550	5,800*
	2.45	5,600	5,450	5,8001)	5,6001)
W	2.05	3,200	3,200	3,300	3,300
	2.25	3,150	3,150	3,300	3,300*
	2.45	3,100	3,100	3,1501)	3,1501)
Χ	2.05	8,300	8,150	7,700	7,550
	2.25	8,250	8,100	7,650	7,950*
	2.45	8,300	8,150	7,7501)	7,6001)

Dimensions are with equipment over steering axle

* Equipment over digging axle for shorter transport dimensions

1) without backhoe bucket

W = Max. ground clearance including approx. 150 mm piping

Backhoe Bucket

with Two-Piece Boom 4.85 m

Digging Envelope

with quick coupler		1	2	3	4
Stick length	m	2.05	2.25	2.45	2.65
Max. digging depth	m	4.95	5.15	5.35	5.55
Max. reach at ground level	m	8.30	8.50	8.70	8.90
Max. dumping height	m	6.70	6.85	7.00	7.15
Max. teeth height	m	9.50	9.65	9.80	9.95
Min. equipment radius	m	2.30	2.34	2.39	2.44

Digging Forces

without quick coupler		1	2	3	4
Max. digging force (ISO 6015)	kN	73.7	68.8	64.5	60.7
	t	7.5	7.0	6.6	6.2
Max. breakout force (ISO 6015)	kN	85.1	85.1	85.1	85.1
	t	8.7	8.7	8.7	8.7

Max. breakout force with ripper bucket

124.1 kN (12.6 t)

Operating Weight

The operating weight includes the basic machine with 8 tyres plus intermediate rings, two-piece boom 4.85 m, stick 2.45 m, quick coupler SWA 33 and bucket 850 mm/0.50 m $^{\rm 3}$.

Undercarriage versions	Weight (kg)
A 914 Litronic with rear blade	15,300
A 914 Litronic with rear outriggers + front blade	16,500
A 914 EW Litronic with rear blade	15,700
A 914 EW Litronic with rear outriggers + front blade	16,700

Buckets Machine stability per ISO 10567* (75% of tipping capacity)

Cutting width	pacity 7451 ¹⁾	Weight			ilizers sed			Rear do	blade wn			Rear out + front dov	blade			Stabi	W ilizers sed			Rear do	blade			Rear ou + front	W triggers t blade wn	;
Ē	Sop	We	,	Stick le	ngth (m	1)		Stick le	ngth (m)		Stick ler	ngth (m))	;	Stick le	ngth (m)	,	Stick le	ngth (m	1)	:	Stick le	ngth (m	ı)
mm	m³	kg	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65
3002)	0.17	220																								
4002)	0.24	250																								
5002)	0.28	250																								
550 ²⁾	0.29	260																								
6502)	0.36	290																								
8502)	0.50	340																								
1,0502)	0.65	380																								
1,2502)	0.80	430				Δ																				
3003)	0.18	210																								
4003)	0.26	240																								
5003)	0.30	240																								
550 ³⁾	0.31	250																								
6503)	0.39	270																								
8503)	0.53	320																								
1,0503)	0.71	370																								
1,2503)	0.87	420		Δ	Δ	Δ																				

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle

Max. material weight \blacksquare = \leq 1.8 t/m³, \blacksquare = \leq 1.5 t/m³, \triangle = \leq 1.2 t/m³, - = not authorised

 $^{^{1)}}$ comparable with SAE (heaped)

²⁾ Bucket with teeth (also available in HD-version) ³⁾ Bucket with cutting edge (also available in HD-version) Buckets up to 500 mm cutting width with limited digging depth

with Two-Piece Boom 4.85 m

A	Undercarr	iage	3.0) m	4.5	m	6.0	m	7.5 m				. 1	Undercari	riage	3.0	m	4.5	m	6.0	m	7.5	m		1	4
1	stabilized		_	J.	_	J.	_	J.	_ 1	l "_	J,		14	stabilized		_	į,		J.	_	J.		ᆲ		ı.	Ī
m	rear	front	5	반	5	반	5	반	 ⇒ 🖰	5	u,	m	m	rear	front	<u>5</u>	<u></u>	5	造		반	5		5	반	L
	-	-								2.4*	2.4*			-	-			2.4*	2.4*					2.2*	2.2*	
7.5	Blade	- Di-d-								2.4*	2.4*	4.2	7.5	Blade	- Di-d-			2.4*	2.4*					2.2*	2.2*	1
	Outriggers	Blade			3.8	4.1*				2.4*	2.4*			Outriggers	Blade			2.4* 3.8	2.4* 3.9*	2.2*	2.2*			2.2*	2.2*	1
6.0	Blade	-			4.1*	4.1*				2.1*	2.1*	5.9	6.0	Blade				3.9*	3.9*	2.2*	2.2*			1.9*	1.9*	
J.U	Outriggers	Blade			4.2*	4.2*				2.1*	2.1*	3.7	0.0	Outriggers	Blade			3.9*	3.9*	2.2*	2.2*			1.9*	1.9*	
	-	-	5.9*	5.9*	3.8	5.1*	2.4	3.8		1.9	2.1*			-	-			3.8	4.9*	2.4	3.8			1.8	1.9*	ı
4.5	Blade	-	5.9*	5.9*	4.1	5.1*	2.6	4.0*		2.1*	2.1*	6.7	4.5	Blade	-			4.1	4.9*	2.6	3.9*		i	1.9*	1.9*	1
	Outriggers	Blade	5.9*	5.9*	5.1*	5.1*	4.0	4.0*		2.1*	2.1*			Outriggers	Blade			4.9*	4.9*	3.9*	3.9*		l	1.9*	1.9*	1
	-	-	6.5	9.3*	3.7	5.7	2.3	3.8		1.6	2.1*			-	-	6.5	8.9*	3.7	5.7	2.4	3.8			1.6	1.9*	
3.0	Blade	-	7.2	9.3*	4.0	5.9*	2.6	4.5*		1.8	2.1*	7.2	3.0	Blade	-	7.2	8.9*	4.0	5.7*	2.6	4.4*			1.7	1.9*	ı
	Outriggers	Blade	9.3*	9.3*	5.9*	5.9*	4.0	4.5*		2.1*	2.1*			Outriggers	Blade	8.9*	8.9*	5.7*	5.7*	4.0	4.4*			1.9*	1.9*	1
	- Di-d-	-	6.4	9.9* 9.9*	3.7	5.6	2.2	3.7		1.5	2.3* 2.3*		1.5	- Disale	-	6.4 7.1	9.8*	3.6	5.6	2.3	3.7			1.5	2.1*	1
1.5	Blade	- Blade	7.1	9.9*	4.0 5.9	6.5* 6.5*	2.5 3.9	4.8* 4.8*		1.7 2.3*	2.3*	7.3	1.5	Blade	Blade	9.8*	9.8* 9.8*	4.0 5.9	6.5* 6.5*	2.5 3.9	4.7* 4.7*			1.7 2.1*	2.1* 2.1*	1
	Outriggers	Didue -	6.2	10.6*	3.4	5.7	2.1	3.5		1.6	2.7			Outriggers	Didue -	6.2	10.5*	3.5	5.7	2.1	3.6			1.5	2.4*	۱
0	Blade	_	7.0	10.6*	3.8	6.6*	2.4	4.8*		1.8	2.7*	7.1	0	Blade	_	7.1	10.5*	3.8	6.6*	2.4	4.8*		l	1.7	2.4*	ı
•	Outriggers	Blade	10.6*	10.6*	6.0	6.6*	3.8	4.8*		2.7*	2.7*		•	Outriggers	Blade	1	10.5*	6.0	6.6*	3.8	4.8*		l	2.4*	2.4*	
	-	-	5.9	10.8*	3.2	5.5	2.0	3.4		1.8	3.0			-	-	5.9	10.8*	3.2	5.5	2.0	3.4			1.7	2.9	١
1.5	Blade	-	6.7	10.8*	3.5	6.8*	2.2	4.4*		2.0	3.6*	6.5	-1.5	Blade	-	6.7	10.8*	3.6	6.7*	2.2	4.6*			1.9	3.1*	1
	Outriggers	Blade	10.8*	10.8*	5.9	6.8*	3.7	4.4*		3.3	3.6*			Outriggers	Blade	10.8*	10.8*	5.9	6.7*	3.7	4.6*			3.1	3.1*	1
	-	-	5.6	9.9*	3.0	5.3*				2.3	3.1*			-	-	5.6	10.4*	3.0	5.3					2.1	3.0*	
3.0	Blade	-	6.4	9.9*	3.4	5.3*				2.6	3.1*	5.4	-3.0	Blade	-	6.4	10.4*	3.4	5.7*					2.4	3.0*	
	Outriggers	Blade	9.9*	9.9*	5.3*	5.3*				3.1*	3.1*			Outriggers	Blade	10.4*	10.4*	5.7	5.7*					3.0*	3.0*	

Stic	k 2.45 r	n												St	ick	2.65 n	n											
14	Undercarr stabilized		3.0) m	4.5	m	6.0	m	7.5	m				t≪		Undercarr stabilized	iage	3.0	m	4.5	m	6.0	m	7.5	m			
m	rear	front	5	d	5	<u>u</u>	5	d	-5	ď	5	<u>L</u>	m	r	n	rear	front	5	<u>d</u>	5	ď	5	<u>b</u>	5	d	<u>⊶</u> 5	<u></u> 6	m
	-	-			2.7*	2.7*					2.0*	2.0*				-	-			2.8*	2.8*					1.8*	1.8*	
7.5	Blade	-			2.7*	2.7*					2.0*	2.0*	4.9	7	7.5	Blade	-			2.8*	2.8*					1.8*	1.8*	5.2
	Outriggers	Blade			2.7*	2.7*		0.5*			2.0*	2.0*				Outriggers	Blade			2.8*	2.8*	0.7	0.7*			1.8*	1.8*	
6.0	Blade	_			3.6* 3.6*	3.6* 3.6*	2.4	2.5* 2.5*			1.8*	1.8* 1.8*	6.3		5.0	Blade	_			3.4* 3.4*	3.4* 3.4*	2.4	2.6* 2.6*			1.6* 1.6*	1.6* 1.6*	6.6
0.0	Outriggers	Blade			3.6*	3.6*	2.5*	2.5*			1.8*	1.8*	0.0	,		Outriggers	Blade			3.4*	3.4*	2.6*	2.6*			1.6*	1.6*	0.0
	-	-			3.8	4.4*	2.4	3.7*			1.7	1.7*				-	-			3.8	4.0*	2.4	3.5*			1.6*	1.6*	
4.5	Blade	-			4.1	4.4*	2.6	3.7*			1.7*	1.7*	7.2	4	.5	Blade	-			4.0*	4.0*	2.7	3.5*			1.6*	1.6*	7.4
	Outriggers	Blade			4.4*	4.4*	3.7*	3.7*			1.7*	1.7*				Outriggers	Blade			4.0*	4.0*	3.6*	3.6*			1.6*	1.6*	
7.0	-	-	6.5	8.5*	3.7	5.6*	2.4	3.8	1.5	2.1*	1.5	1.7*	٠,			-	-	6.6	8.1*	3.6	5.4*	2.4	3.7	1.5	2.4*	1.4	1.6*	
3.0	Blade	- Blade	7.2 8.5*	8.5* 8.5*	4.0 5.6*	5.6* 5.6*	2.6 4.0	4.4* 4.4*	1.7 2.1*	2.1*	1.7	1.7* 1.7*	7.6	3	3.0	Blade	- Blade	7.3	8.1* 8.1*	4.0 5.4*	5.4* 5.4*	2.6 4.0	4.3* 4.3*	1.7 2.4*	2.4* 2.4*	1.6 1.6*	1.6*	7.8
	Outriggers	- Didue	6.4	9.7*	3.6	5.6	2.3	3.7	1.5	2.5	1.7	1.7				Outriggers -	- Didue	6.3	9.6*	3.6	5.6	2.3	3.7	1.5	2.4	1.3	1.7*	
1.5	Blade	_	7.1	9.7*	4.0	6.3*	2.5	4.7*	1.7	2.7*	1.6	1.9*	7.7]	L.5	Blade	_	7.0	9.6*	3.9	6.2*	2.6	4.6*	1.7	3.0*	1.5	1.7*	7.9
	Outriggers	Blade	9.7*	9.7*	5.9	6.3*	3.9	4.7*	2.7*	2.7*	1.9*	1.9*				Outriggers	Blade	9.6*	9.6*	5.9	6.2*	3.9	4.6*	2.7	3.0*	1.7*	1.7*	
	-	-	6.3	10.4*	3.5	5.6	2.1	3.6			1.4	2.2*				-	-	6.3	10.2*	3.5	5.6	2.2	3.6	1.4	2.4	1.3	2.0*	
0	Blade	-	7.1	10.4*	3.9	6.6*	2.4	4.7*			1.6	2.2*	7.5	0)	Blade	-	7.0	10.2*	3.9	6.5*	2.4	4.7*	1.6	2.8*	1.5	2.0*	7.7
	Outriggers	Blade	10.4*	10.4*	5.9	6.6*		4.7*			2.2*	2.2*				Outriggers	Blade	10.2*	10.2*	5.9 3.3	6.5*		4.7*	2.6	2.8*	2.0*	2.0*	
-1.5	Blade	_	5.9	10.7* 10.7*	3.6	5.5 6.7*	2.0	3.4 4.7*			1.6 1.8	2.7 2.7*	6.9	-1		Blade	_	5.9	10.6 10.6*	3.6	5.6 6.6*	2.0	3.4 4.7*			1.5 1.7	2.4*	7.1
-1.5	Outriggers	Blade	10.7*	10.7*	5.9	6.7*	3.7	4.7*			2.7*	2.7*	0.7			Outriggers	Blade	10.6*	10.6*	5.9	6.6*	3.7	4.7*			2.4*	2.4*	7.1
	-	-	5.6	10.7*	3.0	5.3	0.7				2.0	3.0*				-	-	5.7	10.9*	3.0	5.3	1.9	3.3			1.8	3.0*	
-3.0	Blade	-	6.4	10.7*	3.4	6.1*					2.2	3.0*	5.9	-3	3.0	Blade	-	6.5	10.9*	3.4	6.4*	2.1	3.4*			2.1	3.0*	6.2
	Outriggers	Blade	10.7*	10.7*	5.7	6.1*					3.0*	3.0*				Outriggers	Blade	10.9*	10.9*	5.7	6.3*	3.4*	3.4*			3.0*	3.0*	

The lift capacities on the load lift hook of the Liebherr quick coupler SWA 33 without attachment are stated in metric tons (t) and are valid on a firm, level supporting surface with blocked oscillating axle. These capacities can be slewed through 360° with the undercarriage in the transverse position. Capacities in the longitudinal position of the undercarriage (+/- 15°) are specified over the steering axle with the stabilizers raised and over the rigid axle with the stabilizers down. The values apply when the adjusting cylinder is in the optimal position. Indicated loads based on the ISO 10567 standard and do not exceed 75% of tipping or 87% of hydraulic capacity, or are limited by the permissible load of the load lift hook on the quick coupler (max. 5 t). Without the quick coupler, lift capacities will increase by up to 110 kg.

Max. reach * Limited by hydr. capacity

Height → Can be slewed through 360° In longitudinal position of undercarriage

In accordance with the harmonised European Standard EN 474-5, hydraulic excavators used for lifting operations must be equipped with pipe fracture safety valves, an overload warning device, a load lift hook and a lift capacity chart.

with Two-Piece Boom 4.85 m, EW-Undercarriage

Stick	k 2.05 n	n											Stic	k 2.25 n	n											
	Undercarr stabilized	iage	3.0	m P	4.5	m P	6.0	m P	7.5 m	, /	, o		t	Undercarı stabilized		3.0) m	4.5	m P	6.0	m P	7.5	m P		P	
m	rear	front		바	5	바	 ∰	바	50	h -5	<u>6</u>	m	m	rear	front	5	ď	5	<u>u</u>		<u>6</u>		ď	5	바	m
	-	-								2.4*	2.4*			-	-			2.4*	2.4*					2.2*	2.2*	
7.5	Blade	-								2.4*	2.4*	4.2	7.5	Blade	-			2.4*	2.4*					2.2*	2.2*	4.6
	Outriggers	Blade								2.4*	2.4*			Outriggers	Blade			2.4*	2.4*					2.2*	2.2*	
	-	-			4.1*	4.1*				2.1*	2.1*			-	-			3.9*	3.9*	2.2*	2.2*			1.9*	1.9*	
6.0	Blade	-			4.1*	4.1*				2.1*	2.1*	5.9	6.0	Blade	-			3.9*	3.9*	2.2*	2.2*	ĺ		1.9*	1.9*	6.1
	Outriggers	Blade			4.2*	4.2*				2.1*	2.1*			Outriggers	Blade			3.9*	3.9*	2.2*	2.2*			1.9*	1.9*	
	-	-	5.9*	5.9*	4.2	5.1*	2.6	3.9		2.1*	2.1*			-	-			4.2	4.9*	2.7	3.9			1.9*	1.9*	
4.5	Blade	-	5.9*	5.9*	4.6	5.1*	2.9	4.0*		2.1*	2.1*	6.7	4.5	Blade				4.6	4.9*	2.9	3.9*			1.9*	1.9*	6.9
	Outriggers	Blade	5.9*	5.9*	5.1*	5.1*	4.0*	4.0*		2.1*	2.1*			Outriggers	Blade			4.9*	4.9*	3.9*	3.9*			1.9*	1.9*	
	-	-	7.3	9.3*	4.1	5.8	2.6	3.8		1.9	2.1*		7.0	-	-	7.3	8.9*	4.1	5.7*	2.6	3.8	ĺ		1.8	1.9*	١.,
3.0	Blade	- Di-d-	8.1	9.3*	4.5	5.9*	2.9	4.5*		2.1	2.1*	7.2	3.0	Blade	- Di-d-	8.1	8.9*	4.5	5.7*	2.9	4.4*	1		1.9*	1.9*	7.4
	Outriggers	Blade	9.3*	9.3* 9.9*	5.9* 4.1	5.9* 5.7	4.2 2.5	4.5* 3.8		2.1*	2.1*			Outriggers	Blade	8.9*	8.9* 9.8*	5.7* 4.0	5.7* 5.7	4.2 2.5	4.4* 3.8			1.9*	1.9* 2.1*	
1.5	Blade		8.0	9.9*	4.4	6.5*	2.8	4.8*		2.0	2.3*	7.3	1.5	Blade		8.0	9.8*	4.4	6.5*	2.8	3.0 4.7*			1.7	2.1*	7.5
1.5	Outriggers	Blade	9.9*	9.9*	6.2	6.5*	4.1	4.8*		2.3*	2.3*	7.3	1.5	Outriggers	Blade	9.8*	9.8*	6.2	6.5*	4.1	4.7*			2.1*	2.1*	7.5
	-	-	7.1	10.6*	3.9	5.8	2.4	3.6		1.8	2.7*			- Outlinggers	-	7.2	10.5*	3.9	5.8	2.4	3.6			1.7	2.4*	
0	Blade	_	8.1*	10.6*	4.3	6.6*	2.7	4.8*		2.0	2.7*	7.1	0	Blade	_	8.0	10.5*	4.3	6.6*	2.7	4.8*	ĺ		1.9	2.4*	7.3
•	Outriggers	Blade		10.6*	6.3	6.6*	4.0	4.8*		2.7*	2.7*		•	Outriggers	Blade		10.5*	6.2	6.6*	4.0	4.8*	ĺ		2.4*	2.4*	'''
	-	-	6.8	10.8*	3.6	5.6	2.3	3.5		2.0	3.1			-	-	6.8	10.8*	3.6	5.6	2.3	3.5			1.9	3.0	
-1.5	Blade	-	7.7	10.8*	4.0	6.8*	2.6	4.4*		2.3	3.6*	6.5	-1.5	Blade	-	7.7	10.8*	4.1	6.7*	2.6	4.6*			2.1	3.1*	6.7
	Outriggers	Blade	10.8*	10.8*	6.2	6.8*	3.9	4.4*		3.5	3.6*			Outriggers	Blade	10.8*	10.8*	6.2	6.7*	3.9	4.6*			3.1*	3.1*	
	-	-	6.5	9.9*	3.4	5.3*				2.6	3.1*			-	-	6.5	10.4*	3.4	5.4			1		2.4	3.0*	
-3.0	Blade	-	7.4	9.9*	3.9	5.3*				3.0	3.1*	5.4	-3.0	Blade	-	7.4	10.4*	3.9	5.7*			ĺ		2.7	3.0*	5.7
	Outriggers	Blade	9.9*	9.9*	5.3*	5.3*				3.1*	3.1*			Outriggers	Blade	10.4*	10.4*	5.7*	5.7*			ĺ		3.0*	3.0*	

Stic	k 2.45 r	n												St	tick	c 2.65 n	n											
t∰	Undercarr stabilized		3.0) m	4.5	m	6.0	m	7.5	m				† <		Undercarr stabilized		3.0	m	4.5	m	6.0	m	7.5	m			
+ ₪ m	rear	front		<u>4</u>		<u> </u>	5	ď	5	<u>6</u>	5	<u>H</u>	m	*	m	rear	front	5	ď	<u></u> ∰	ď	5	<u>4</u>	5	4	5	<u>d</u>	m
	-	-	_		2.7*	2.7*					2.0*	2.0*				-	-	_	_	2.8*	2.8*	_				1.8*	1.8*	
7.5	Blade	-			2.7*	2.7*					2.0*	2.0*	4.9		7.5	Blade	-			2.8*	2.8*					1.8*	1.8*	5.2
	Outriggers	Blade			2.7*	2.7*	0.54	0.5+			2.0*	2.0*				Outriggers	Blade			2.8*	2.8*	0 (*	0 (*			1.8*	1.8*	
6.0	Blade	-			3.6* 3.6*	3.6* 3.6*	2.5* 2.5*	2.5* 2.5*			1.8*	1.8* 1.8*	6.3		6.0	- Blade	-			3.4* 3.4*	3.4* 3.4*	2.6* 2.6*	2.6* 2.6*			1.6* 1.6*	1.6* 1.6*	6.6
0.0	Outriggers	Blade			3.6*	3.6*	2.5*	2.5*			1.8*	1.8*	0.0		0.0	Outriggers	Blade			3.4*	3.4*	2.6*	2.6*			1.6*	1.6*	0.0
	-	-			4.2	4.4*	2.7	3.7*			1.7*	1.7*				-	-			4.0*	4.0*	2.7	3.5*			1.6*	1.6*	
4.5	Blade	-			4.4*	4.4*	3.0	3.7*			1.7*	1.7*	7.2		4.5	Blade	-			4.0*	4.0*	3.0	3.5*			1.6*	1.6*	7.4
	Outriggers	Blade		0.5*	4.4*	4.4*	3.7*	3.7*		0.1+	1.7*	1.7*				Outriggers	Blade		0.7*	4.0*	4.0*	3.6*	3.6*		0.4*	1.6*	1.6*	
3.0	Blade	-	7.3 8.1	8.5* 8.5*	4.1 4.5	5.6* 5.6*	2.7	3.8 4.4*	1.7 1.9	2.1* 2.1*	1.7 1.7*	1.7* 1.7*	7.6		3.0	- Blade	-	7.3 8.1*	8.1* 8.1*	4.0 4.4	5.4* 5.4*	2.7 2.9	3.8 4.3*	1.7 1.9	2.4* 2.4*	1.6* 1.6*	1.6* 1.6*	7.8
3.0	Outriggers	Blade	8.5*	8.5*	5.6*	5.6*	4.2	4.4*	2.1*	2.1*	1.7*	1.7*	7.0		3.0	Outriggers	Blade	8.1*	8.1*	5.4*	5.4*	4.1	4.3*	2.4*	2.4*	1.6*	1.6*	7.0
	-	-	7.1	9.7*	4.0	5.7	2.6	3.8	1.7	2.6	1.6	1.9*				-	-	7.1	9.6*	4.0	5.7	2.6	3.8	1.7	2.6	1.5	1.7*	
1.5	Blade	-	7.9	9.7*	4.4	6.3*	2.8	4.7*	1.9	2.7*	1.8	1.9*	7.7		1.5	Blade	-	7.9	9.6*	4.4	6.2*	2.9	4.6*	1.9	3.0*	1.7*	1.7*	7.9
	Outriggers	Blade	9.7*	9.7*	6.2	6.3*	4.1	4.7*	2.7*	2.7*	1.9*	1.9*				Outriggers	Blade	9.6*	9.6*	6.1	6.2*	4.1	4.6*	2.8	3.0*	1.7*	1.7*	
0	- Blade	-	7.2 8.0	10.4* 10.4*	3.9 4.4	5.7 6.6*	2.4	3.6 4.7*			1.6 1.8	2.2* 2.2*	7.5		0	- Blade	-	7.1	10.2* 10.2*	3.9 4.4	5.7 6.5*	2.4	3.7 4.7*	1.6 1.8	2.5 2.8*	1.6 1.8	2.0*	7.7
U	Outriggers	Blade	10.4*	10.4*	6.2	6.6*	4.0	4.7*			2.2*	2.2*	7.5	,	۱ ۱	Outriggers	Blade	10.2*	10.2*	6.1	6.5*	4.0	4.7*	2.8*	2.8*	2.0*	2.0*	1.1
	-	-	6.8	10.7*	3.7	5.7	2.3	3.5			1.8	2.7*				-	-	6.8	10.6*	3.7	5.7	2.3	3.5	2.0	2.0	1.7	2.4*	
-1.5	Blade	-	7.7	10.7*	4.1	6.7*	2.6	4.7*			2.0	2.7*	6.9	-:	1.5	Blade	-	7.7	10.6*	4.1	6.6*	2.6	4.7*			1.9	2.4*	7.1
	Outriggers	Blade	10.7*	10.7*	6.3	6.7*	3.9	4.7*			2.7*	2.7*				Outriggers	Blade	10.6*	10.6*	6.3	6.6*	3.9	4.7*			2.4*	2.4*	
7.0	- Dlada	-	6.5	10.7*	3.4	5.4					2.3	3.0*	F 0		7.0	- Dlada	-	6.5	10.9*	3.4	5.4	2.2	3.4*			2.1	3.0*	,,
-3.0	Blade Outriggers	- Blade	7.5 10.7*	10.7* 10.7*	6.0	6.1* 6.1*					2.5 3.0*	3.0* 3.0*	5.9		3.0	Blade Outriggers	- Blade	7.5 10.9*	10.9* 10.9*	3.8 6.0	6.4* 6.3*	2.5 3.4*	3.4* 3.4*			2.4 3.0*	3.0* 3.0*	6.2

Max. reach * Limited by hydr. capacity The lift capacities on the load lift hook of the Liebherr quick coupler SWA 33 without attachment are stated in metric tons (t) and are valid on a firm, level supporting surface with blocked oscillating axle. These capacities can be slewed through 360° with the undercarriage in the transverse position. Capacities in the longitudinal position of the undercarriage (+/- 15°) are specified over the steering axle with the stabilizers raised and over the rigid axle with the stabilizers down. The values apply when the adjusting cylinder is in the optimal position. Indicated loads based on the ISO 10567 standard and do not exceed 75% of tipping or 87% of hydraulic capacity, or are limited by the permissible load of the load lift hook on the quick coupler (max. 5 t). Without the quick coupler, lift capacities will increase by

In accordance with the harmonised European Standard EN 474-5, hydraulic excavators used for lifting operations must be equipped with pipe fracture safety valves, an overload warning device, a load lift hook and a lift capacity chart.

Height •• Can be slewed through 360° In longitudinal position of undercarriage

Backhoe Bucket

with Two-Piece Boom 4.85 m (Heavy Counterweight)

Digging Envelope

with quick coupler		1	2	3	4
Stick length	m	2.05	2.25	2.45	2.65
Max. digging depth	m	4.95	5.15	5.35	5.55
Max. reach at ground level	m	8.30	8.50	8.70	8.90
Max. dumping height	m	6.70	6.85	7.00	7.15
Max. teeth height	m	9.50	9.65	9.80	9.95
Min. equipment radius	m	2.30	2.34	2.39	2.44

Digging Forces

without quick coupler		1	2	3	4
Max. digging force (ISO 6015)	kN	73.7	68.8	64.5	60.7
	t	7.5	7.0	6.6	6.2
Max. breakout force (ISO 6015)	kN	85.1	85.1	85.1	85.1
	t	8.7	8.7	8.7	8.7

Max. breakout force with ripper bucket

124.1 kN (12.6 t)

Operating Weight

The operating weight includes the basic machine (heavy counterweight) with 8 tyres plus intermediate rings, two-piece boom $4.85 \, \text{m}$, stick $2.45 \, \text{m}$, quick coupler SWA 33 and bucket $850 \, \text{mm} / 0.50 \, \text{m}^3$.

Undercarriage versions	Weight (kg)
A 914 Litronic with rear blade	15,700
A 914 Litronic with rear outriggers + front blade	16,900
A 914 EW Litronic with rear blade	16,100
A 914 EW Litronic with rear outriggers + front blade	17,100

Buckets Machine stability per ISO 10567* (75% of tipping capacity)

Cutting width	oacity 7451 ¹⁾	Weight			ilizers sed			Rear do	blade wn			Rear out + front dov	blade			Stabi	W ilizers sed			Rear do	blade			+ front	W triggers t blade wn	\$
Ē	Sop	×	;	Stick le	ngth (m	1)		Stick le	ngth (m)		Stick ler	igth (m)		;	Stick le	ngth (m	1)		Stick le	ngth (m	1)	;	Stick le	ngth (m	ı)
mm	m³	kg	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65
3002)	0.17	220																								
4002)	0.24	250																								
5002)	0.28	250																								
550 ²⁾	0.29	260																								
6502)	0.36	290																								
8502)	0.50	340																								
1,0502)	0.65	380																								
1,2502)	0.80	430																								
3003)	0.18	210																								
4003)	0.26	240																								
5003)	0.30	240																								
550 ³⁾	0.31	250																								
6503)	0.39	270																								
8503)	0.53	320																								•
1,0503)	0.71	370																								
1,2503)	0.87	420				Δ																				

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle

Max. material weight \blacksquare = ≤ 1.8 t/m³, \blacksquare = ≤ 1.5 t/m³, \triangle = ≤ 1.2 t/m³, - = not authorised

 $^{^{1)}}$ comparable with SAE (heaped)

 $^{^{21}}$ Bucket with teeth (also available in HD-version) $^{-3}$ Bucket with cutting edge (also available in HD-version) Buckets up to 500 mm cutting width with limited digging depth

with Two-Piece Boom 4.85 m (Heavy Counterweight)

1 Height → Can be slewed through 360° In longitudinal position of undercarriage

	Undercarr	iage	3.0	m	4.5	m	6.0	m	7.5 m	م ا		η		Undercari	riage	3.0) m	4.5	m	6.0	m	7.5 m	1	M	gD)
	stabilized			····		 P	0.0	 -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1		t ∜	stabilized			, P		 P	0.0	 P	, , , , , , , , , , , , , , , , , , ,		و م	<u>#</u>
n	rear	front	5	바	5	바	5	바	 5 ₫	5	止	m	m	rear	front	5	峼	5	쑙		止	- 🖢	5	바	
	-	-								2.4*	2.4*			-	-			2.4*	2.4*				2.2*	2.2*	٠
.5	Blade	-								2.4*	2.4*	4.2	7.5	Blade	-			2.4*	2.4*				2.2*	2.2*	,
İ	Outriggers	Blade								2.4*	2.4*			Outriggers	Blade			2.4*	2.4*				2.2*	2.2*	,
	-	-			4.0	4.1*				2.1*	2.1*			-	-			3.9*	3.9*	2.2*	2.2*		1.9*	1.9*	1
0	Blade	-			4.1*	4.1*				2.1*	2.1*	5.9	6.0	Blade	-			3.9*	3.9*	2.2*	2.2*		1.9*	1.9*	ı
	Outriggers	Blade			4.2*	4.2*				2.1*	2.1*			Outriggers	Blade			3.9*	3.9*	2.2*	2.2*		1.9*	1.9*	
	-	-	5.9*	5.9*	4.0	5.1*	2.5	4.0		2.0	2.1*			-	-			4.0	4.9*	2.6	3.9*		1.9*	1.9*	
-	Blade	-	5.9*	5.9*	4.4	5.1*	2.8	4.0*		2.1*	2.1*	6.7	4.5	Blade	-			4.4	4.9*	2.8	3.9*		1.9*	1.9*	
	Outriggers	Blade	5.9*	5.9*	5.1*	5.1*	4.0*	4.0*		2.1*	2.1*			Outriggers	Blade			4.9*	4.9*	3.9*	3.9*		1.9*	1.9*	
_	-	-	6.9	9.3*	3.9	5.9*	2.5	4.0		1.8	2.1*			-	-	6.9	8.9*	3.9	5.7*	2.5	4.0		1.7	1.9*	
- 1	Blade	-	7.6	9.3*	4.3	5.9*	2.8	4.5*		2.0	2.1*	7.2	3.0	Blade	-	7.6	8.9*	4.3	5.7*	2.8	4.4*		1.9	1.9*	
	Outriggers	Blade	9.3*	9.3*	5.9*	5.9*	4.2	4.5*		2.1*	2.1*			Outriggers	Blade	8.9*	8.9*	5.7*	5.7*	4.2	4.4*		1.9*	1.9*	
_	-	-	6.8	9.9*	3.9	5.9	2.4	3.9		1.7	2.3*			-	-	6.8	9.8*	3.9	5.9	2.4	3.9		1.6	2.1*	
- 1	Blade	-	7.5	9.9*	4.2	6.5*	2.7	4.8*		1.9	2.3*	7.3	1.5	Blade	-	7.5	9.8*	4.2	6.5*	2.7	4.7*		1.8	2.1*	
	Outriggers	Blade	9.9*	9.9*	6.2	6.5*	4.1	4.8*		2.3*	2.3*			Outriggers	Blade	9.8*	9.8*	6.2	6.5*	4.1	4.7*		2.1*	2.1*	
ŀ	- DI-d-	-	6.7	10.6*	3.7	6.0	2.3	3.8 4.8*		1.7	2.7*		0	Di-d-	-	6.7	10.5*	3.7	5.9	2.3	3.8		1.6	2.4*	
- 1	Blade	- Blade	7.5 10.6*	10.6* 10.6*	4.1 6.2	6.6* 6.6*	2.5 4.0	4.8*		1.9 2.7*	2.7* 2.7*	7.1	U	Blade	- Blade	7.5 10.5*	10.5* 10.5*	4.1 6.2	6.6* 6.6*	2.6 4.0	4.8* 4.8*		1.8 2.4*	2.4*	
	Outriggers	- Didue	6.4	10.8*	3.4	5.8	2.2	3.6		1.9	3.2			Outriggers	Didue -	6.4	10.5	3.4	5.8	2.2	3.6		1.8	3.1	
.5	Blade		7.2	10.8*	3.4	6.8*	2.4	4.4*		2.2	3.6*	6.5	-1.5	Blade		7.2	10.8*	3.4	6.7*	2.4	4.6*		2.0	3.1*	
-	Outriggers	Blade	10.8*	10.8*	6.2	6.8*	3.9	4.4*		3.5	3.6*	0.5	-1.5	Outriggers	Blade	10.8*	10.8*	6.2	6.7*	3.9	4.6*		3.1*	3.1*	
	-	_	6.1	9.9*	3.3	5.3*	5.7	7.4		2.5	3.1*			- outriggers	-	6.1	10.4*	3.2	5.6	3.7	4.0		2.3	3.0*	
0	Blade	_	6.9	9.9*	3.6	5.3*				2.8	3.1*	5.4	-3.0	Blade	_	6.9	10.4*	3.6	5.7*				2.6	3.0*	
-	Outriggers	Blade	9.9*	9.9*	5.3*	5.3*				3.1*	3.1*	JT	5.0	Outriggers	Blade	10.4*	10.4*	5.7*	5.7*				3.0*	3.0*	

Stic	k 2.45 r	n												S	tick	(2.65 n	n											
14	Undercarr stabilized		3.0) m •	4.5	i m	6.0	m _P	7.5	m P		P		t.		Undercarr stabilized		3.0) m _P	4.5	m ,	6.0	m •	7.5	m ,			
m	rear	front	5	e	5	바		바	5	바		<u> </u>	m	·	m	rear	front	5	ď	5	<u>'</u>	5	<u> </u>	5	<u>'</u>	5	<u></u>	m
	-	-			2.7*	2.7*					2.0*	2.0*				-	-			2.8*	2.8*					1.8*	1.8*	
7.5	Blade	-			2.7*	2.7*					2.0*	2.0*	4.9		7.5	Blade	-			2.8*	2.8*					1.8*	1.8*	5.2
	Outriggers	Blade			2.7*	2.7*					2.0*	2.0*				Outriggers	Blade			2.8*	2.8*					1.8*	1.8*	
	-	-			3.6*	3.6*	2.5*	2.5*			1.8*	1.8*				-	-			3.4*	3.4*	2.6	2.6*			1.6*	1.6*	
6.0	Blade	-			3.6*	3.6*	2.5*	2.5*			1.8*	1.8*	6.3		6.0	Blade	-			3.4*	3.4*	2.6*	2.6*			1.6*	1.6*	6.6
	Outriggers	Blade			3.6*	3.6*	2.5*	2.5*			1.8*	1.8*				Outriggers	Blade			3.4*	3.4*	2.6*	2.6*			1.6*	1.6*	
, -	- Disale	-			4.0	4.4*	2.6	3.7* 3.7*			1.7*	1.7*	7.0		, -	- Di-d-	-			4.0	4.0*	2.6	3.5*			1.6*	1.6*	7,
4.5	Blade	- Blade			4.4 4.4*	4.4* 4.4*	2.8 3.7*	3.7*			1.7*	1.7* 1.7*	7.2		4.5	Blade	- Blade			4.0* 4.0*	4.0* 4.0*	2.8 3.6*	3.5* 3.6*			1.6* 1.6*	1.6* 1.6*	7.4
	Outriggers	Didue -	6.9	8.5*	3.9	5.6*	2.5	3.9	1.7	2.1*	1.6	1.7*				Outriggers	Didue -	6.9	8.1*	3.9	5.4*	2.6	3.9	1.7	2.4*	1.5	1.6*	
3.0	Blade	_	7.6	8.5*	4.2	5.6*	2.8	4.4*	1.8	2.1*	1.7*	1.7*	7.6		3.0	Blade	_	7.6	8.1*	4.2	5.4*	2.8	4.3*	1.9	2.4*	1.6*	1.6*	7.8
0.0	Outriggers	Blade	8.5*	8.5*	5.6*	5.6*	4.2	4.4*	2.1*	2.1*	1.7*	1.7*	7.0		0.0	Outriggers	Blade	8.1*	8.1*	5.4*	5.4*	4.1	4.3*	2.4*	2.4*	1.6*	1.6*	,,,,
	-	-	6.8	9.7*	3.8	5.9	2.5	3.9	1.6	2.7	1.5	1.9*				-	-	6.7	9.6*	3.8	5.8	2.5	3.9	1.6	2.7	1.5	1.7*	
1.5	Blade	-	7.5	9.7*	4.2	6.3*	2.7	4.7*	1.8	2.7*	1.7	1.9*	7.7		1.5	Blade	-	7.4	9.6*	4.2	6.2*	2.7	4.6*	1.8	3.0*	1.6	1.7*	7.9
	Outriggers	Blade	9.7*	9.7*	6.1	6.3*	4.1	4.7*	2.7*	2.7*	1.9*	1.9*				Outriggers	Blade	9.6*	9.6*	6.1	6.2*	4.1	4.6*	2.8	3.0*	1.7*	1.7*	
	-	-	6.7	10.4*	3.7	5.9	2.3	3.8			1.6	2.2*				-	-	6.7	10.2*	3.7	5.8	2.3	3.8	1.5	2.6	1.5	2.0*	
0	Blade	-	7.5	10.4*	4.1	6.6*	2.6	4.7*			1.7	2.2*	7.5		0	Blade	-	7.4	10.2*	4.1	6.5*		4.7*	1.7	2.8*	1.7	2.0*	7.7
	Outriggers	Blade	10.4*	10.4*	6.2	6.6*	4.0	4.7*			2.2*	2.2*				Outriggers	Blade	10.2*	10.2*	6.1	6.5*	4.0	4.7*	2.8*	2.8*	2.0*	2.0*	
	-	-	6.3	10.7*	3.5	5.9	2.2	3.6			1.7	2.7*				-	-	6.3	10.6*	3.5	5.9	2.2	3.6			1.6	2.4*	
-1.5	Blade	- Diada	7.2	10.7*	3.9	6.7*	2.4 3.9	4.7* 4.7*			1.9	2.7*	6.9	-	-1.5	Blade	- Dlada	7.2	10.6*	3.9	6.6*	2.4	4.7*			1.8	2.4*	7.1
	Outriggers	Blade	10.7*	10.7* 10.7*	6.2 3.2	6.7* 5.6	3.9	4./*			2.7*	2.7* 3.0*				Outriggers	Blade	10.6*	10.6* 10.9*	6.3 3.2	6.6* 5.6	3.9 2.1	4.7* 3.4*			2.4*	3.0*	
-3.0	Blade	_	6.9	10.7*	3.6	6.1*					2.4	3.0*	5.9	_	-3.0	Blade	_	6.9	10.9*	3.6	6.4*	2.3	3.4*			2.0	3.0*	6.2
3.0	Outriggers	Blade	10.7*		6.0	6.1*					3.0*	3.0*	5.7		0.0	Outriggers	Blade	10.9*	10.7	6.0	6.3*	3.4*	3.4*			3.0*	3.0*	0.2

Max. reach * Limited by hydr. capacity The lift capacities on the load lift hook of the Liebherr quick coupler SWA 33 without attachment are stated in metric tons (t) and are valid on a firm, level supporting surface with blocked oscillating axle. These capacities can be slewed through 360° with the undercarriage in the transverse position. Capacities in the longitudinal position of the undercarriage (+/- 15°) are specified over the steering axle with the stabilizers raised and over the rigid axle with the stabilizers down. The values apply when the adjusting cylinder is in the optimal position. Indicated loads based on the ISO 10567 standard and do not exceed 75% of tipping or 87% of hydraulic capacity, or are limited by the permissible load of the load lift hook on the quick coupler (max. 5 t). Without the quick coupler, lift capacities will increase by

In accordance with the harmonised European Standard EN 474-5, hydraulic excavators used for lifting operations must be equipped with pipe fracture safety valves, an overload warning device, a load lift hook and a lift capacity chart.

with Two-Piece Boom 4.85 m (Heavy Counterweight), EW-Undercarriage

4		_	1									_		1	_	1									_
	Undercarr	iage	3.0) m	4.5	m	6.0	m	7.5 m				A 19	Undercari		3.0) m	4.5	m	6.0	m	7.5 m			
1	stabilized		_	al.	_	J.	_	J.	_ 1	Ĭ	ı.		14	stabilized	l	_	į.	_	i.		į.		. I	aL	Ĭ
m	rear	front	5	바	5	바	5	造	 ⇒ 🖰	5		m	m	rear	front	5	造	5	<u>L</u>	 5	造	 ∰ [1	L'	n
	-	-								2.4*	2.4*			-	-			2.4*	2.4*				2.2*	2.2*	
7.5	Blade	-								2.4*	2.4*	4.2	7.5	Blade	-			2.4*	2.4*				2.2*	2.2*	4.
	Outriggers	Blade								2.4*	2.4*			Outriggers	Blade			2.4*	2.4*				2.2*	2.2*	
	-	-			4.1*	4.1*				2.1*	2.1*			-	-			3.9*	3.9*	2.2*	2.2*		1.9*		١.
6.0	Blade	-			4.1*	4.1*				2.1*	2.1*	5.9	6.0	Blade	-			3.9*	3.9*	2.2*	2.2*		1.9*	1.9*	6.
	Outriggers	Blade	F 0*	F 0*	4.2*	4.2*		4.0*		2.1*	2.1*			Outriggers	Blade			3.9*	3.9*	2.2*	2.2*		1.9*		
, -	- Di-d-	-	5.9*	5.9*	4.4	5.1*	2.8	4.0*		2.1*	2.1*		, -	DI-J-	-			4.4	4.9*	2.8	3.9*		1.9*		
4.5	Blade	- Blade	5.9* 5.9*	5.9* 5.9*	4.8 5.1*	5.1* 5.1*	3.1	4.0* 4.0*		2.1*	2.1* 2.1*	6.7	4.5	Blade	Blade			4.8 4.9*	4.9* 4.9*	3.1 3.9*	3.9* 3.9*		1.9* 1.9*	1.9* 1.9*	6.
	Outriggers	Blade	7.7	9.3*	4.3	5.9*	4.0*			2.1	2.1*			Outriggers	Blaue	7.7	8.9*	4.9	5.7*	2.8	4.0		1.9*	1.9*	
3.0	Blade		8.5	9.3*	4.7	5.9*	3.1	4.1 4.5*		2.1*	2.1*	7.2	3.0	Blade		8.5	8.9*	4.7	5.7*	3.1	4.4*		1.9*	1.9*	7.
3.0	Outriggers	Blade	9.3*	9.3*	5.9*	5.9*	4.4	4.5*		2.1*	2.1*	7.2	3.0	Outriggers	Blade	8.9*	8.9*	5.7*	5.7*	4.4	4.4*		1.9*	1.9*	"
	-	-	7.6	9.9*	4.3	6.0	2.7	4.0		1.9	2.3*			-	-	7.6	9.8*	4.3	6.0	2.7	4.0		1.8	2.1*	
1.5	Blade	_	8.4	9.9*	4.7	6.5*	3.0	4.8*		2.1	2.3*	7.3	1.5	Blade	_	8.4	9.8*	4.7	6.5*	3.0	4.7*		2.0	2.1*	7.
0	Outriggers	Blade	9.9*	9.9*	6.5	6.5*	4.4	4.8*		2.3*	2.3*	7.0	1.0	Outriggers	Blade	9.8*	9.8*	6.4	6.5*	4.3	4.7*		2.1*	2.1*	'
	-	-	7.6	10.6*	4.2	6.1	2.6	3.9		2.0	2.7*			-	-	7.6	10.5*	4.2	6.0	2.6	3.9		1.9	2.4*	
0	Blade	-	8.5	10.6*	4.6	6.6*	2.9	4.8*		2.2	2.7*	7.1	0	Blade	-	8.4	10.5*	4.6	6.6*	2.9	4.8*		2.1	2.4*	7.3
	Outriggers	Blade	10.6*	10.6*	6.5	6.6*	4.2	4.8*		2.7*	2.7*			Outriggers	Blade	10.5*	10.5*	6.5	6.6*	4.2	4.8*		2.4*	2.4*	
	-	-	7.3	10.8*	3.9	5.9	2.5	3.7		2.2	3.3			-	-	7.3	10.8*	3.9	6.0	2.5	3.7		2.1	3.1*	
1.5	Blade	-	8.3	10.8*	4.3	6.8*	2.7	4.4*		2.4	3.6*	6.5	-1.5	Blade	-	8.3	10.8*	4.3	6.7*	2.7	4.6*		2.3	3.1*	6.3
	Outriggers	Blade	10.8*	10.8*	6.6	6.8*	4.1	4.4*		3.6*	3.6*			Outriggers	Blade	10.8*	10.8*	6.6	6.7*	4.1	4.6*		3.1*	3.1*	
	-	-	7.0	9.9*	3.7	5.3*				2.8	3.1*			-	-	7.0	10.4*	3.7	5.7*				2.6	3.0*	
-3.0	Blade	-	8.0	9.9*	4.2	5.3*				3.1*	3.1*	5.4	-3.0	Blade	-	8.0	10.4*	4.1	5.7*				2.9	3.0*	5.
	Outriggers	Blade	9.9*	9.9*	5.3*	5.3*				3.1*	3.1*			Outriggers	Blade	10.4*	10.4*	5.7*	5.7*				3.0*	3.0*	

Sti	CK 2.45 I	n												Sti	K 2.65 r	n											
t≪f	Undercari stabilized		3.0) m	4.5	m	6.0	m	7.5	m				t≪	Undercar		3.0	m	4.5	m	6.0	m	7.5	m			
₩ W	rear	front	5	<u>L</u>	5	d H	∰	<u>L</u>	5	<u>L</u>	5	Ŀ	m	₩ Đ M	rear	front	5	ď	5	<u>L</u>	5	<u>H</u>		<u>L</u>	 ∰	<u>H</u>	m
7.	- Blade Outriggers	- Blade			2.7* 2.7* 2.7*	2.7* 2.7* 2.7*					2.0* 2.0* 2.0*	2.0* 2.0* 2.0*	4.9	7.	- Blade Outriggers	- Blade			2.8* 2.8* 2.8*	2.8* 2.8* 2.8*					1.8* 1.8* 1.8*	1.8* 1.8* 1.8*	5.2
6.	Blade Outriggers	- - Blade			3.6* 3.6* 3.6*	3.6* 3.6* 3.6*	2.5* 2.5* 2.5*	2.5* 2.5* 2.5*			1.8* 1.8* 1.8*	1.8* 1.8* 1.8*	6.3	6.0	- Blade Outriggers	- - Blade			3.4* 3.4* 3.4*	3.4* 3.4* 3.4*	2.6* 2.6* 2.6*	2.6* 2.6* 2.6*			1.6* 1.6* 1.6*	1.6* 1.6* 1.6*	6.6
4.	Blade Outriggers	- - Blade			4.4 4.4* 4.4*	4.4* 4.4* 4.4*	2.9 3.1 3.7*	3.7* 3.7* 3.7*			1.7* 1.7* 1.7*	1.7* 1.7* 1.7*	7.2	4.!	- Blade Outriggers	- - Blade			4.0* 4.0* 4.0*	4.0* 4.0* 4.0*	2.9 3.1 3.6*	3.5* 3.5* 3.6*			1.6* 1.6* 1.6*	1.6* 1.6* 1.6*	7.4
3.	Blade Outriggers	- Blade	7.7 8.5* 8.5*	8.5* 8.5* 8.5*	4.3 4.7 5.6*	5.6* 5.6* 5.6*	2.8 3.1 4.3	4.0 4.4* 4.4*	1.9 2.1* 2.1*	2.1* 2.1* 2.1*	1.7* 1.7* 1.7*	1.7* 1.7* 1.7*	7.6	3.0	- Blade Outriggers	- Blade	7.7 8.1* 8.1*	8.1* 8.1* 8.1*	4.3 4.7 5.4*	5.4* 5.4* 5.4*	2.9 3.1 4.3*	4.0 4.3* 4.3*	1.9 2.1 2.4*	2.4* 2.4* 2.4*	1.6* 1.6* 1.6*	1.6* 1.6* 1.6*	7.8
1.	Blade Outriggers	- - Blade	7.5 8.3 9.7*	9.7* 9.7* 9.7*	4.2 4.6 6.3*	6.0 6.3* 6.3*	2.8 3.0 4.3	4.0 4.7* 4.7*	1.8 2.0 2.7*	2.7* 2.7* 2.7*	1.7 1.9* 1.9*	1.9* 1.9* 1.9*	7.7	1.	- Blade Outriggers	- Blade	7.5 8.3 9.6*	9.6* 9.6* 9.6*	4.2 4.6 6.2*	5.9 6.2* 6.2*	2.8 3.0 4.3	4.0 4.6* 4.6*	1.8 2.0 3.0	2.7 3.0* 3.0*	1.7 1.7* 1.7*	1.7* 1.7* 1.7*	7.9
0	- Blade Outriggers	- - Blade	7.6 8.4 10.4*	10.4* 10.4* 10.4*	4.2 4.6 6.4	6.0 6.6* 6.6*	2.6 2.9 4.2	3.9 4.7* 4.7*			1.8 2.0 2.2*	2.2* 2.2* 2.2*	7.5	0	- Blade Outriggers	- - Blade	7.5 8.3 10.2*	10.2* 10.2* 10.2*	4.2 4.6 6.4	5.9 6.5* 6.5*	2.6 2.9 4.3	3.9 4.7* 4.7*	1.8 2.0 2.8*	2.7 2.8* 2.8*	1.7 1.9 2.0*	2.0* 2.0* 2.0*	7.7
-1.	-	- - Blade	7.3 8.3 10.7*	10.7* 10.7* 10.7*	3.9 4.4 6.6	6.0 6.7* 6.7*	2.5 2.7 4.1	3.7 4.7* 4.7*			2.0 2.2 2.7*	2.7* 2.7* 2.7*	6.9	-1.9	- Blade Outriggers	- Blade	7.3 8.3 10.6*	10.6* 10.6* 10.6*	4.0 4.4 6.5	6.0 6.6* 6.6*	2.5 2.8 4.1	3.7 4.7* 4.7*			1.9 2.1 2.4*	2.4* 2.4* 2.4*	7.1
-3.	-	- - Blade	7.0 8.0 10.7*	10.7* 10.7* 10.7*	3.7 4.1 6.1*	5.7 6.1* 6.1*					2.4 2.7 3.0*	3.0* 3.0* 3.0*	5.9	-3.0	- Blade Outriggers	- - Blade	7.0 8.0 10.9*	10.9* 10.9* 10.9*	3.7 4.1 6.3*	5.7 6.4* 6.3*	2.4 2.7 3.4*	3.4* 3.4* 3.4*			2.3 2.6 3.0*	3.0* 3.0* 3.0*	6.2

The lift capacities on the load lift hook of the Liebherr quick coupler SWA 33 without attachment are stated in metric tons (t) and are valid on a firm, level supporting surface with blocked oscillating axle. These capacities can be slewed through 360° with the undercarriage in the transverse position. Capacities in the longitudinal position of the undercarriage (+/- 15°) are specified over the steering axle with the stabilizers raised and over the rigid axle with the stabilizers down. The values apply when the adjusting cylinder is in the optimal position. Indicated loads based on the ISO 10567 standard and do not exceed 75% of tipping or 87% of hydraulic capacity, or are limited by the permissible load of the load lift hook on the quick coupler (max. 5 t). Without the quick coupler, lift capacities will increase by up to 110 kg.

Max. reach * Limited by hydr. capacity

Height Can be slewed through 360° In longitudinal position of undercarriage

In accordance with the harmonised European Standard EN 474-5, hydraulic excavators used for lifting operations must be equipped with pipe fracture safety valves, an overload warning device, a load lift hook and a lift capacity chart.

Backhoe Bucket

with Mono Boom 4.60 m

Digging Envelope

with quick coupler		1	2	3	4
Stick length	m	2.05	2.25	2.45	2.65
Max. digging depth	m	5.00	5.20	5.40	5.60
Max. reach at ground level	m	7.95	8.15	8.35	8.55
Max. dumping height	m	6.25	6.35	6.50	6.65
Max. teeth height	m	8.95	9.10	9.25	9.40
Min. equipment radius	m	2.03	2.05	2.07	2.09

Digging Forces

without quick coupler		1	2	3	4
Max. digging force (ISO 6015)	kN	73.7	68.8	64.5	60.7
	t	7.5	7.0	6.6	6.2
Max. breakout force (ISO 6015)	kN	85.1	85.1	85.1	85.1
	t	8.7	8.7	8.7	8.7

Max. breakout force with ripper bucket

124.1 kN (12.6 t)

Operating Weight

The operating weight includes the basic machine with 8 tyres plus intermediate rings, mono boom 4.60~m, stick 2.45~m, quick coupler SWA 33~and bucket $850~mm/0.50~m^3$.

Undercarriage versions	Weight (kg)
A 914 Litronic with rear blade	15,000
A 914 Litronic with rear outriggers + front blade	16,200

Buckets Machine stability per ISO 10567* (75% of tipping capacity)

Cutting width	Capacity ISO 7451 ¹⁾	Weight		Stabi rais	lizers sed				blade wn			+ fron	itriggers t blade own	
SE	S S	We		Stick lei	ngth (m)			Stick le	ngth (m)			Stick le	ngth (m)	
mm	m³	kg	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65
3002)	0.17	220					-				-			
4002)	0.24	250	-		-		-	-		-	-		•	-
5002)	0.28	250												
5502)	0.29	260	•											
6502)	0.36	290									•			
8502)	0.50	340	-		-		-	-		-	-		•	-
1,0502)	0.65	380									-			
1,2502)	0.80	430					-				-			
3003)	0.18	210									•			
4003)	0.26	240					-				•			
5003)	0.30	240	•								•			
550 ³⁾	0.31	250	•											
6503)	0.39	270									-			
8503)	0.53	320	-			-	-	-		-	-			
1,0503)	0.71	370									-			
1.2503)	0.87	420				Δ								

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle

Max. material weight \blacksquare = \leq 1.8 t/m³, \blacksquare = \leq 1.5 t/m³, \triangle = \leq 1.2 t/m³, - = not authorised

 $^{^{1)}}$ comparable with SAE (heaped)

 $^{^{21}}$ Bucket with teeth (also available in HD-version) $^{-3}$ Bucket with cutting edge (also available in HD-version) Buckets up to 500 mm cutting width with limited digging depth

with Mono Boom 4.60 m

4	Undercarr	iono	3.0	m	4.5	- I	6.0	m	7.5 m	1	- 30	n		Undercari	riono	3.0	m	4.5	m	6.0	m	7.5 ו	_ I		-	m
	stabilized	iaye	3.0		4.0		0.0		7.5 111				t≪1	stabilized		3.0		4.3		0.0		7.51	",		-	
m	rear	front	5	d	5	d	 ∰	<u>b</u>	<u></u> ⇒ [) 5	<u> </u>	m	m	rear	front	5	ď	5	<u></u>	5	<u>b</u>	 ∰	<u>b</u>	5	峼	m
	-	-												-	-									2.2*	2.2*	
7.5	Blade	-											7.5	Blade	-								ı	2.2*	2.2*	3.
	Outriggers	Blade												Outriggers	Blade								l	2.2*	2.2*	
	-	-			3.6*	3.6*				2.1*	2.1*			-	-			3.5*	3.5*					1.9*	1.9*	
6.0	Blade	-			3.6*	3.6*				2.1*	2.1*	5.3	6.0	Blade	-			3.5*	3.5*				l	1.9*	1.9*	5.
	Outriggers	Blade			3.6*	3.6*				2.1*	2.1*			Outriggers	Blade			3.5*	3.5*					1.9*	1.9*	
	-	-			3.6	4.1*	2.3	3.0*		2.1*	2.1*			-	-			3.7	3.9*	2.3	3.2*			1.9*	1.9*	
4.5	Blade	-			4.0	4.1*	2.6	3.0*		2.1*	2.1*	6.3	4.5	Blade	-			3.9*	3.9*	2.6	3.2*			1.9*	1.9*	6
	Outriggers	Blade			4.1*	4.1*	3.0*	3.0*		2.1*	2.1*			Outriggers	Blade			3.9*	3.9*	3.2*	3.2*			1.9*	1.9*	1
	-	-	6.2	7.7*	3.4	5.1*	2.2	3.6		1.8	2.2*			-	-	6.2	7.2*	3.4	4.9*	2.2	3.6			1.7	2.0*	
3.0	Blade	-	7.0	7.7*	3.8	5.1*	2.5	4.2*		2.0	2.2*	6.8	3.0	Blade	-	7.1	7.2*	3.8	4.9*	2.5	4.0*			1.9	2.0*	7.
	Outriggers	Blade	7.7*	7.7*	5.1*	5.1*	3.9	4.2*		2.2*	2.2*			Outriggers	Blade	7.2*	7.2*	4.9*	4.9*	3.9	4.0*			2.0*	2.0*	
	-	-	5.4	6.7*	3.1	5.4	2.1	3.5		1.7	2.5*			-	-	5.5	7.6*	3.1	5.4	2.1	3.5			1.6	2.2*	1
1.5	Blade	-	6.2	6.7*	3.5	6.1*	2.3	4.6*		1.9	2.5*	6.9	1.5	Blade	-	6.2	7.6*	3.5	6.0*	2.3	4.5*			1.8	2.2*	7.
	Outriggers	Blade	6.7*	6.7*	5.8	6.1*	3.8	4.6*		2.5*	2.5*			Outriggers	Blade	7.6*	7.6*	5.8	6.0*	3.8	4.5*			2.2*	2.2*	
	-	-	5.2	7.3*	3.0	5.2	2.0	3.4		1.7	2.9			-	-	5.2	7.3*	2.9	5.2	2.0	3.4		l	1.7	2.7*	
0	Blade	-	6.0	7.3*	3.3	6.6*	2.2	4.8*		1.9	3.0*	6.7	0	Blade	-	6.0	7.3*	3.3	6.6*	2.2	4.8*		l	1.9	2.7*	6.
	Outriggers	Blade	7.3*	7.3*	5.6	6.6*	3.7	4.8*		3.0*	3.0*			Outriggers	Blade	7.3*	7.3*	5.6	6.6*	3.7	4.8*			2.7*	2.7*	
	-	-	5.2	9.6*	2.9	5.1	2.0	3.4		2.0	3.4			-	-	5.2	9.8*	2.9	5.1	2.0	3.4			1.9	3.2	
-1.5	Blade	-	6.0	9.6*	3.3	6.4*	2.2	4.5*		2.2	4.3*	6.0	-1.5	Blade	-	6.0	9.8*	3.2	6.5*	2.2	4.6*			2.1	3.7*	6.
	Outriggers	Blade	9.6*	9.6*	5.5	6.4*	3.6	4.5*		3.6	4.3*			Outriggers	Blade	9.8*	9.8*	5.5	6.5*	3.6	4.6*			3.4	3.7*	
	-	-	5.4	7.7*	3.0	5.2*				2.7	4.7			-	-	5.3	8.0*	2.9	5.2					2.5	4.3	_
-3.0	Blade	-	6.1	7.7*	3.3	5.2*				3.0	4.7*	4.8	-3.0	Blade	-	6.1	8.0*	3.3	5.4*					2.8	4.6*	5.
	Outriggers	Blade	7.7*	7.7*	5.2*	5.2*				4.7*	4.7*			Outriggers	Blade	8.0*	8.0*	5.4*	5.4*				ı	4.6*	4.6*	

Stic	k 2.45 r	n											Sti	ck 2.65 r	n										
1	Undercarı stabilized		3.0) m P	4.5	m P	6.0	m ,	7.5 m		•		t∜	Undercar stabilized		3.0	m p	4.5	m ,	6.0	m _o	7.5 m			
m	rear	front	5	빰	5	바	5	바	- - 5 🖢	5	ď	m	m	rear	front	5	ď	5	<u></u>	5	<u> </u>	⊶ ⇒ 🖺	5	<u>e</u>	m
	-	-	_					_		2.0*	2.0*			-	-			1.9*	1.9*	_			1.8*	1.8*	
7.5	Blade	-								2.0*	2.0*	4.2	7.	Blade	-			1.9*	1.9*				1.8*	1.8*	4.6
	Outriggers	Blade								2.0*	2.0*			Outriggers	Blade			1.9*	1.9*				1.8*	1.8*	
	-	-			3.2*	3.2*				1.7*	1.7*			-	-			3.0*	3.0*	1.8*	1.8*		1.6*	1.6*	
6.0		-			3.2*	3.2*				1.7*	1.7*	5.8	6.		-			3.0*	3.0*	1.8*	1.8*		1.6*	1.6*	6.1
	Outriggers	Blade			3.2*	3.2*				1.7*	1.7*			Outriggers	Blade			3.0*	3.0*	1.8*	1.8*		1.6*	1.6*	
, -	- Disale	-			3.7*	3.7*	2.3	3.2*		1.7*	1.7*		,	- Di-d-	-			3.4*	3.4*	2.3	3.1*		1.6*	1.6*	
4.5	1	- Blade			3.7*	3.7* 3.7*	2.6 3.2*	3.2* 3.2*		1.7*	1.7* 1.7*	6.7	4.		Blade			3.4*	3.4* 3.4*	2.6 3.1*	3.1* 3.1*		1.6* 1.6*	1.6* 1.6*	6.9
	Outriggers -	- Didue	6.3	6.7*	3.4	4.7*	2.2	3.6		1.7	1.8*			Outriggers	- Didue	6.2*	6.2*	3.4	4.5*	2.2	3.6		1.6	1.6*	
3.0	Blade	_	6.7*	6.7*	3.8	4.7*	2.5	3.9*		1.8*	1.8*	7.2	3.) Blade	_	6.2*	6.2*	3.8	4.5*	2.5	3.8*		1.6*	1.6*	7.4
0.0	Outriggers	Blade	6.7*	6.7*	4.7*	4.7*	3.9	3.9*		1.8*	1.8*		•	Outriggers	Blade	6.2*	6.2*	4.5*	4.5*	3.8*	3.8*		1.6*	1.6*	
	-	-	5.5	8.8*	3.1	5.4	2.1	3.5		1.5	2.0*			-	-	5.6	9.4*	3.1	5.4	2.1	3.5		1.5	1.8*	
1.5	Blade	-	6.3	8.8*	3.5	5.8*	2.3	4.4*		1.7	2.0*	7.3	1.	Blade	-	6.3	9.4*	3.5	5.7*	2.3	4.3*		1.7	1.8*	7.5
	Outriggers	Blade	8.7*	8.7*	5.8	5.8*	3.8	4.4*		2.0*	2.0*			Outriggers	Blade	9.4*	9.4*	5.7*	5.7*	3.7	4.3*		1.8*	1.8*	
	-	-	5.2	7.4*	2.9	5.2	2.0	3.4		1.6	2.4*			-	-	5.2	7.5*	2.9	5.2	2.0	3.4		1.5	2.1*	
0	Blade	-	5.9	7.4*	3.3	6.5*	2.2	4.7*		1.8	2.4*	7.1	0	Blade	-	5.9	7.5*	3.3	6.4*	2.2	4.7*		1.7	2.1*	7.3
	Outriggers	Blade	7.4* 5.1	7.4*	5.6 2.8	6.5*	3.6	4.7*		2.4*	2.4*			Outriggers	Blade	7.5*	7.5*	5.5	6.4*	3.6	4.7* 3.3		2.1*	2.1*	
-1.5	Blade	-	5.9	9.5* 9.5*	3.2	5.1 6.5*	1.9	3.3 4.6*		2.0	3.0 3.2*	6.5	-1.	Blade	-	5.8	9.2* 9.2*	2.8	5.1 6.5*	1.9 2.1	5.5 4.7*		1.6 1.9	2.8*	6.7
-1.5	Outriggers	Blade	9.5*	9.5*	5.5	6.5*	3.6	4.6*		3.2*	3.2*	0.0	-1.	Outriggers	Blade	9.2*	9.2*	5.4	6.5*	3.6	4.7*		2.8*	2.8*	0.7
	-	-	5.2	8.3*	2.9	5.1	3.0	4.0		2.3	3.9			-	-	5.2	8.6*	2.8	5.1	5.0	4.7		2.1	3.6	
- 3.0	Blade	_	6.0	8.3*	3.2	5.6*				2.6	4.4*	5.4	-3.) Blade	_	5.9	8.6*	3.2	5.7*				2.4	4.3*	5.6
	Outriggers	Blade	8.3*	8.3*	5.5	5.6*				4.2	4.4*		-	Outriggers	Blade	8.6*	8.6*	5.5	5.7*					4.3*	
	-	-												-	-	5.4	5.5*						3.9	4.4*	
-4.5		-											-4.	5 Blade	-	5.5*	5.5*						4.4*	4.4*	3.7
	Outriggers	Blade												Outriggers	Blade	5.5*	5.5*						4.4*	4.4*	

Height — Can be slewed through 360° In longitudinal position of undercarriage Max. reach *Limited by hydr. capacity

The lift capacities on the load lift hook of the Liebherr quick coupler SWA 33 without attachment are stated in metric tons (t) and are valid on a firm, level supporting surface with blocked oscillating axle. These capacities can be slewed through 360° with the undercarriage in the transverse position. Capacities in the longitudinal position of the undercarriage (+/- 15°) are specified over the steering axle with the stabilizers raised and over the rigid axle with the stabilizers down. Indicated loads based on the ISO 10567 standard and do not exceed 75% of tipping or 87% of hydraulic capacity, or are limited by

the permissible load of the load lift hook on the quick coupler (max. 5 t). Without the quick coupler, lift capacities will increase by up to 110 kg.

In accordance with the harmonised European Standard EN 474-5, hydraulic excavators used for lifting operations must be equipped with pipe fracture safety valves, an overload warning device, a load lift hook and a lift capacity chart.

Backhoe Bucket

with Offset Two-Piece Boom 4.90 m

Digging Envelope

with quick coupler		1	2	3
Stick length	m	2.05	2.25	2.45
Max. digging depth	m	5.00	5.20	5.40
Max. reach at ground level	m	8.30	8.50	8.70
Max. dumping height	m	6.55	6.70	6.80
Max. teeth height	m	9.30	9.45	9.60
Min. equipment radius	m	2.29	2.31	2.34
1 with stick 2.05 m	4 with stick 2.05 m			

 1 with stick 2.05 m
 4 with stick 2.05 m

 2 with stick 2.25 m
 5 with stick 2.25 m

 3 with stick 2.45 m
 6 with stick 2.45 m

with set straight boom at max. equipment offset with vertical ditch walls

Digging Forces

without quick coupler		1	2	3
Max. digging force (ISO 6015)	kN	73.7	68.8	64.5
	t	7.5	7.0	6.6
Max. breakout force (ISO 6015)	kN	85.1	85.1	85.1
	t	8.7	8.7	8.7

Max. breakout force with ripper bucket

124.1 kN (12.6 t)

Operating Weight

The operating weight includes the basic machine with 8 tyres plus intermediate rings, offset two-piece boom 4.90 m, stick 2.45 m, quick coupler SWA 33 and bucket 850 mm/0.50 m 3 .

Undercarriage versions	Weight (kg)
A 914 Litronic with rear blade	15,900
A 914 Litronic with rear outriggers + front blade	17,100

Buckets Machine stability per ISO 10567* (75% of tipping capacity)

Cutting width	ity 51 ¹³			Stabilizers raised	Rear outriggers + front blade down							
	Capacity ISO 74511	Weight	0.05	Stick length (m)	0.45	0.05	Stick length (m)	0.45	0.05	Stick length (m)	0.45	
mm	m³	kg	2.05	2.25	2.45	2.05	2.25	2.45	2.05	2.25	2.45	
3002)	0.17	220			•	•	•	•		•		
4002)	0.24	250									-	
5002)	0.28	250			•				•			
5502)	0.29	260										
6502)	0.36	290								•		
8502)	0.50	340				•				•		
1,0502)	0.65	380										
1,2502)	0.80	430	Δ	Δ	Δ						•	
3003)	0.18	210										
4003)	0.26	240			-		•	•			•	
5003)	0.30	240										
550 ³⁾	0.31	250			•		•	•			•	
6503)	0.39	270										
8503)	0.53	320			-		•				•	
1,0503)	0.71	370										
1,2503)	0.87	420	Δ	Δ	-		Δ	Δ				

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle 11 comparable with SAE (heaped)

Max. material weight \blacksquare = \leq 1.8 t/m³, \blacksquare = \leq 1.5 t/m³, \triangle = \leq 1.2 t/m³, - = not authorised

 $^{^{21}}$ Bucket with teeth (also available in HD-version) $^{-3}$ Bucket with cutting edge (also available in HD-version) Buckets up to 500 mm cutting width with limited digging depth

with Offset Two-Piece Boom 4.90 m

Stic	k 2.05 n	n												Stic	k 2.25 ı	n										
1	Undercarr stabilized	iage	3.0	m	4.5	m •	6.0	m ,	7.5 m	֓֡֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡֓֡֓֓֡֓֡֓֡֡֡֡				t∜	Undercar stabilized		3.0) m	4.5	m •	6.0	m	7.5 m			
m	rear	front		峼	5	峼	⊶	<u>u</u>	 ∰	함	-4	<u>d</u>	m	m	rear	front	5	법	⊶ 5	占		<u>u</u>	\$ ₫	5	바	m
7.5	- Blade Outriggers	- Blade									2.3* 2.3* 2.3*	2.3* 2.3* 2.3*	4.2	7.5	- Blade Outriggers	- - Blade			2.2* 2.2* 2.2*	2.2* 2.2* 2.2*				2.1* 2.1* 2.1*	2.1* 2.1* 2.1*	4.5
6.0	- Blade Outriggers	- - Blade			3.8 4.1* 4.1*	4.1* 4.1* 4.1*					2.0* 2.0* 2.0*	2.0* 2.0* 2.0*	5.8	6.0	-	-			3.8 3.8* 3.8*	3.8* 3.8* 3.8*	2.0* 2.0* 2.0*	2.0* 2.0* 2.0*		1.9* 1.9* 1.9*	1.9* 1.9* 1.9*	6.0
4.5	- Blade Outriggers	- - Blade	6.3* 6.3* 6.3*	6.3* 6.3* 6.3*	3.7 4.1 4.7*	4.7* 4.7* 4.7*	2.3 2.5 3.9*	3.7 3.9* 3.9*			1.8 2.0 2.0*	2.0* 2.0* 2.0*	6.7	4.5	-	-			3.7 4.1 4.6*	4.6* 4.6* 4.6*	2.3 2.5 3.8*	3.7 3.8* 3.8*		1.7 1.8* 1.8*	1.8* 1.8* 1.8*	6.9
3.0	- Blade Outriggers	- - Blade	6.4 7.0 8.8*	8.8* 8.8* 8.8*	3.6 3.9 5.5*	5.5* 5.5* 5.5*	2.2 2.5 3.9	3.7 4.2* 4.2*			1.5 1.7 2.1*	2.1* 2.1* 2.1*	7.2	3.0	- Blade Outriggers	- - Blade	6.4 7.1 8.4*	8.4* 8.4* 8.4*	3.6 3.9 5.4*	5.4* 5.4* 5.4*	2.3 2.5 3.9	3.7 4.2* 4.2*		1.4 1.6 1.9*	1.9* 1.9* 1.9*	7.3
1.5	- Blade Outriggers	- - Blade	6.2 6.9 9.4*	9.4* 9.4* 9.4*	3.6 3.9 5.7	5.4 6.1* 6.1*	2.1 2.4 3.8	3.6 4.5* 4.5*			1.4 1.6 2.3*	2.3* 2.3* 2.3*	7.3	1.5	-	- - Blade	6.2 6.9 9.3*	9.3* 9.3* 9.3*	3.5 3.9 5.7	5.4 6.0* 6.0*	2.2 2.4 3.8	3.6 4.4* 4.4*		1.3 1.5 2.1*	2.1* 2.1* 2.1*	7.5
0	- Blade Outriggers	- - Blade	6.1 6.9 10.1*	10.1* 10.1* 10.1*	3.4 3.8 5.8	5.5 6.3* 6.3*	1.9 2.2 3.6	3.4 4.5* 4.5*			1.4 1.6 2.7	2.5 2.8* 2.8*	7.0	0	- Blade Outriggers	- - Blade	6.2 6.9 10.0*	10.0* 10.0* 10.0*	3.4 3.8 5.7	5.5 6.2* 6.2*	2.0 2.2 3.7	3.4 4.5* 4.5*		1.3 1.5 2.5*	2.4 2.5* 2.5*	7.2
-1.5	- Blade Outriggers	- - Blade	5.7 6.5 10.3*	10.3* 10.3* 10.3*	2.9 3.3 5.7	5.3 6.5* 6.5*	1.8 2.0 3.5	3.2 4.2* 4.2*			1.5 1.8 3.1	2.9 3.5* 3.5*	6.4	-1.5	- Blade Outriggers	- - Blade	5.7 6.5 10.3*	10.3* 10.3* 10.3*	3.0 3.4 5.7	5.3 6.4* 6.4*	1.8 2.0 3.5	3.2 4.4* 4.4*		1.5 1.7 2.9	2.7 3.3* 3.3*	6.7
-3.0	- Blade Outriggers	- - Blade	5.2 6.0 9.6*	9.7* 9.7* 9.6*	2.7 3.1 5.1*	5.0 5.1* 5.1*					2.1 2.4 3.1*	3.1* 3.1* 3.1*	5.3	-3.0	-	- - Blade	5.3 6.1 10.1*	10.1* 10.1* 10.1*	2.7 3.1 5.4	5.0 5.5* 5.5*				1.9 2.2 3.1*	3.1* 3.1* 3.1*	5.6

Stick 2.45 m

		Undercarr	iage	3.0) m	4.5	m	6.0	m	7.5	m			
,	m [A	stabilized rear	front		<mark>L</mark>	 5	<u>L</u>		4	√	<mark>-</mark> L	- - 5	<mark>,</mark>	m
		-	-	-	_	2.5*	2.5*	-	_	_	_	1.9*	1.9*	
	7.5	Blade	_			2.5*	2.5*					1.9*	1.9*	4.8
		Outriggers	Blade			2.5*	2.5*					1.9*	1.9*	
		-	-			3.6*	3.6*	2.3	2.3*			1.7*	1.7*	
	6.0	Blade	_			3.6*	3.6*	2.3*	2.3*			1.7*	1.7*	6.3
		Outriggers	Blade			3.6*	3.6*	2.3*	2.3*			1.7*	1.7*	
		-	-			3.7	4.4*	2.3	3.7*			1.6	1.7*	
	4.5	Blade	-			4.1	4.4*	2.6	3.7*			1.7*	1.7*	7.1
		Outriggers	Blade			4.4*	4.4*	3.7*	3.7*			1.7*	1.7*	
		-	-	6.4	8.0*	3.6	5.2*	2.3	3.7	1.4	1.9*	1.4	1.7*	
	3.0	Blade	-	7.1	8.0*	3.9	5.2*	2.5	4.1*	1.6	1.9*	1.5	1.7*	7.5
		Outriggers	Blade	8.0*	8.0*	5.2*	5.2*	3.8	4.1*	1.9*	1.9*	1.7*	1.7*	
		-	-	6.2	9.2*	3.5	5.4	2.2	3.6	1.3	2.4	1.2	1.9*	
	1.5	Blade	-	6.8	9.2*	3.8	5.9*	2.4	4.4*	1.5	2.5*	1.4	1.9*	7.6
		Outriggers	Blade	9.2*	9.2*	5.7	5.9*	3.8	4.4*	2.5*	2.5*	1.9*	1.9*	
		-	-	6.2	9.8*	3.4	5.4	2.0	3.4			1.2	2.2*	
	0	Blade	-	6.9	9.8*	3.8	6.2*	2.2	4.4*			1.4	2.2*	7.4
		Outriggers	Blade	9.8*	9.8*	5.7	6.2*	3.7	4.4*			2.2*	2.2*	
		-	-	5.7	10.2*	3.0	5.4	1.8	3.2			1.4	2.6	
	-1.5	Blade	-	6.5	10.2*	3.4	6.3*	2.0	4.5*			1.6	2.8*	6.9
		Outriggers	Blade	10.2*	10.2*	5.8	6.3*	3.5	4.4*			2.8	2.8*	
		-	-	5.3	10.4*	2.7	5.0					1.7	3.0*	
	-3.0	Blade	-	6.1	10.4*	3.1	5.9*					2.0	3.0*	5.9
		Outriggers	Blade	10.4*	10.4*	5.4	5.9*					3.0*	3.0*	

Height -Can be slewed through 360° In longitudinal position of undercarriage Max. reach *Limited by hydr. capacity

The lift capacities on the load lift hook of the Liebherr quick coupler SWA 33 without attachment are stated in metric tons (t) and are valid on a firm, level supporting surface with blocked oscillating axle. These capacities can be slewed through 360° with the undercarriage in the transverse position. Capacities in the longitudinal position of the undercarriage (+/- 15°) are specified over the steering axle with the stabilizers raised and over the rigid axle with the stabilizers down. The values apply when the adjusting cylinder is in the optimal position. Indicated loads based on the ISO 10567 standard and do not exceed 75% of tipping or 87% of hydraulic capacity, or are limited by the permissible load of the load lift hook on the quick coupler (max. 5 t). Without the quick coupler, lift capacities will increase by up to 110 kg.

In accordance with the harmonised European Standard EN 474-5, hydraulic excavators used for lifting operations must be equipped with pipe fracture safety valves, an overload warning device, a load lift hook and a lift capacity chart.

Backhoe Bucket

with Offset Two-Piece Boom 4.90 m (Heavy Counterweight)

Digging Envelope

with quick coupler			1	2	3
Stick length		m	2.05	2.25	2.45
Max. digging depth		m	5.00	5.20	5.40
Max. reach at ground level		m	8.30	8.50	8.70
Max. dumping height		m	6.55	6.70	6.80
Max. teeth height		m	9.30	9.45	9.60
Min. equipment radius		m	2.29	2.31	2.34
1 with stick 2.05 m	4 with stick 2.05 m				
2 with stick 2.25 m	5 with stick 2.25 m				

3 with stick 2.45 m 6 with stick 2.45 m

with set straight boom at max. equipment offset with vertical ditch walls

Digging Forces

without quick coupler	1	2	3
Max. digging force (ISO 6015) kN	73.7	68.8	64.5
1	7.5	7.0	6.6
Max. breakout force (ISO 6015) kN	85.1	85.1	85.1
1	8.7	8.7	8.7

Max. breakout force with ripper bucket

124.1 kN (12.6 t)

Operating Weight

The operating weight includes the basic machine (heavy counterweight) with 8 tyres plus intermediate rings, offset two-piece boom 4.90 m, stick 2.45 m, quick coupler SWA 33 and bucket 850 mm / 0.50 m³.

Undercarriage versions	Weight (kg)
A 914 Litronic with rear blade	16,300
A 914 Litronic with rear outriggers + front blade	17.500

Buckets Machine stability per ISO 10567* (75% of tipping capacity)

Cutting width	Capacity ISO 7451 ¹⁾	Weight		Stabilizers raised			Rear blade down			Rear outriggers + front blade down	
3	<u>s</u> s	×		Stick length (m)			Stick length (m)			Stick length (m)	
mm	m³	kg	2.05	2.25	2.45	2.05	2.25	2.45	2.05	2.25	2.45
3002)	0.17	220	•								
4002)	0.24	250	•		•						
5002)	0.28	250									
5502)	0.29	260			•						
6502)	0.36	290									
8502)	0.50	340	•		•						
1,0502)	0.65	380	•					•			
1,2502)	0.80	430	=		Δ						
3003)	0.18	210	•								
4003)	0.26	240	•		•						
5003)	0.30	240	•								
5503)	0.31	250	•		•						
6503)	0.39	270	•			•	•	•			
8503)	0.53	320	•								
1,0503)	0.71	370					•			•	
1,2503)	0.87	420	=	Δ	Δ	-		-			

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle 1) comparable with SAE (heaped)

Max. material weight \blacksquare = $\leq 1.8 \text{ t/m}^3$, \blacksquare = $\leq 1.5 \text{ t/m}^3$, \triangle = $\leq 1.2 \text{ t/m}^3$, - = not authorised

²⁾ Bucket with teeth (also available in HD-version) ³⁾ Bucket with cutting edge (also available in HD-version) Buckets up to 500 mm cutting width with limited digging depth

with Offset Two-Piece Boom 4.90 m (Heavy Counterweight)

Stic	k 2.05 n	n												Sti	ck 2.2	25 n	n											
▲ ///	Undercarr	iage	3.0) m	4.5	m	6.0	m	7.5 m					♦ //		ercarr		3.0) m	4.5	m	6.0	m	7.5	m			
14	stabilized	, ,	5	d,	5	<u>L</u>	5	<u>L</u>	- - 5 [, _	4 0	4		1.2		ııızeu		<u>5</u>	d,	5	J,	5	J,		J.		اً	
m	rear	front		u		Ц		u	ا بيور			0.7*	m	m	rear		front	- -	ч		0.0*		Ц		Ц	0.1*	0.7*	m
7.5	Blade	-										2.3* 2.3*	4.2	7.	- Blade		_			2.2*	2.2* 2.2*					2.1*	2.1*	4.5
7.0		Blade										2.3*	4.2	/.	Outrig		Blade			2.2*	2.2*					2.1*	2.1*	4.3
	Outriggers -	- Diauc			4.0	4.1*						2.0*			- Outily	yyers	-			3.8*	3.8*	2.0*	2.0*			1.9*	1.9*	
6.0	Blade	_			4.1*	4.1*						2.0*	5.8	6.	Blade		_			3.8*	3.8*	2.0*	2.0*			1.9*	1.9*	6.0
0.0	Outriggers	Blade			4.1*	4.1*						2.0*	0.0	0.	Outrig		Blade			3.8*	3.8*	2.0*	2.0*			1.9*	1.9*	0.0
	-	-	6.3*	6.3*	3.9	4.7*	2.4	3.9		_		2.0*			-	,,,	-			3.9	4.6*	2.5	3.8*			1.8*	1.8*	
4.5	Blade	-	6.3*	6.3*	4.3	4.7*	2.7	3.9*		1 2	2.0*	2.0*	6.7	4.	5 Blade		-			4.3	4.6*	2.7	3.8*			1.8*	1.8*	6.9
	Outriggers	Blade	6.3*	6.3*	4.7*	4.7*	3.9*	3.9*		1 2	2.0*	2.0*			Outrig	ggers	Blade			4.6*	4.6*	3.8*	3.8*			1.8*	1.8*	
	-	-	6.7	8.8*	3.8	5.5*	2.4	3.9		1	l.6	2.1*			-		-	6.8	8.4*	3.8	5.4*	2.4	3.8			1.6	1.9*	
3.0	Blade	-	7.4	8.8*	4.2	5.5*	2.7	4.2*				2.1*	7.2	3.) Blade		-	7.4	8.4*	4.2	5.4*	2.7	4.2*			1.8	1.9*	7.3
	Outriggers	Blade	8.8*	8.8*	5.5*	5.5*	4.0	4.2*				2.1*			Outri	ggers	Blade	8.4*	8.4*	5.4*	5.4*	4.0	4.2*			1.9*	1.9*	
	-	-	6.6	9.4*	3.8	5.7	2.3	3.8				2.3*		_	_ -		-	6.6	9.3*	3.8	5.7	2.3	3.8			1.5	2.1*	
1.5		-	7.3	9.4*	4.1	6.1*	2.6	4.5*				2.3*	7.3	1.			-	7.2	9.3*	4.1	6.0*	2.6	4.4*			1.6	2.1*	7.5
	Outriggers	Blade	9.4*	9.4*	5.9	6.1*	4.0	4.5*		_		2.3*			Outrig	ggers	Blade	9.3*	9.3*	5.9	6.0*	4.0	4.4*			2.1*	2.1*	
•	-	-	6.6	10.1*	3.6	5.8	2.1	3.6			L.5	2.7 2.8*	7.0	•	- DI- 4-		-	6.6	10.0*	3.6	5.7	2.1	3.6			1.5	2.5*	7.0
0	Blade	- Blade	7.4 10.1*	10.1* 10.1*	4.0 6.0	6.3* 6.3*	2.4 3.9	4.5* 4.5*				2.8*	7.0	0	Blade		- Blade	7.3 10.0*	10.0* 10.0*	4.0 5.9	6.2* 6.2*	2.4 3.9	4.5* 4.5*			1.7 2.5*	2.5* 2.5*	7.2
	Outriggers	- Didue	6.1	10.1	3.2	5.6	1.9	3.4			2.0 L.7	3.1			Outri	yyers	Didue	6.1	10.0	3.2	5.7	2.0	3.5			1.6	2.9	
-1.5	Blade	_	7.0	10.3*	3.6	6.5*	2.2	4.2*		- 1		3.5*	6.4	-1.	5 Blade		_	7.0	10.3*	3.6	6.4*	2.0	4.4*			1.8	3.3*	6.7
1.0	Outriggers	Blade	10.3*	10.3*	6.0	6.5*	3.7	4.2*				3.5*	0.4	1.	Outrig		Blade	10.3*	10.3*	6.1	6.4*	3.7	4.4*			3.1	3.3*	0.7
	-	-	5.7	9.7*	3.0	5.1*	0.7	2				3.1*			-	12010	-	5.7	10.1*	3.0	5.4	0.7				2.1	3.1*	
-3.0	Blade	-	6.5	9.7*	3.4	5.1*						3.1*	5.3	-3.	Blade		-	6.5	10.1*	3.4	5.5*					2.4	3.1*	5.6
	Outriggers	Blade	9.6*	9.6*	5.1*	5.1*						3.1*			Outrig		Blade	10.1*	10.1*	5.5*	5.5*					3.1*	3.1*	

Stick 2.45 m

<u>, </u>
u m
1.9*
1.9* 4.8
1.9*
1.7*
1.7* 6.3
1.7*
1.7*
1.7* 7.1
1.7*
1.7*
1.7* 7.5
1.7*
1.9*
1.9* 7.6
1.9*
2.2*
2.2* 7.4
2.2*
2.7
2.8* 6.9
2.8*
3.0*
3.0* 5.9
3.0*

Height -Can be slewed through 360° In longitudinal position of undercarriage Max. reach *Limited by hydr. capacity

The lift capacities on the load lift hook of the Liebherr quick coupler SWA 33 without attachment are stated in metric tons (t) and are valid on a firm, level supporting surface with blocked oscillating axle. These capacities can be slewed through 360° with the undercarriage in the transverse position. Capacities in the longitudinal position of the undercarriage (+/- 15°) are specified over the steering axle with the stabilizers raised and over the rigid axle with the stabilizers down. The values apply when the adjusting cylinder is in the optimal position. Indicated loads based on the ISO 10567 standard and do not exceed 75% of tipping or 87% of hydraulic capacity, or are limited by the permissible load of the load lift hook on the quick coupler (max. 5 t). Without the quick coupler, lift capacities will increase by up to 110 kg.

In accordance with the harmonised European Standard EN 474-5, hydraulic excavators used for lifting operations must be equipped with pipe fracture safety valves, an overload warning device, a load lift hook and a lift capacity chart.

Backhoe Bucket

with Offset Mono Boom 4.30 m

Digging Envelope

with quick coupler		1	2	3
Stick length	m	2.05	2.25	2.45
Max. digging depth	m	4.55	4.75	4.95
Max. reach at ground level	m	7.60	7.80	8.00
Max. dumping height	m	6.05	6.20	6.35
Max. teeth height	m	8.80	8.95	9.10
Min. equipment radius	m	1.68	1.71	1.73
1 with stick 2.05 m	4 with stick 2.05 m			

 1 with stick 2.05 m
 4 with stick 2.05 m

 2 with stick 2.25 m
 5 with stick 2.25 m

 3 with stick 2.45 m
 6 with stick 2.45 m

with set straight boom at max. equipment offset with vertical ditch walls

Digging Forces

without quick coupler		1	2	3
Max. digging force (ISO 6015)	kN	73.7	68.8	64.5
	t	7.5	7.0	6.6
Max. breakout force (ISO 6015)	kN	85.1	85.1	85.1
	t	8.7	8.7	8.7

Max. breakout force with ripper bucket

124.1 kN (12.6 t)

Operating Weight

The operating weight includes the basic machine with 8 tyres plus intermediate rings, offset mono boom 4.30 m, stick 2.45 m, quick coupler SWA 33 and bucket 850 mm/0.50 m 3 .

Undercarriage versions	Weight (kg)
A 914 Litronic with rear blade	15,300
A 914 Litronic with rear outriggers + front blade	16,500

Buckets Machine stability per ISO 10567* (75% of tipping capacity)

Cutting width	Capacity ISO 7451 ¹³	Weight		Stabilizers raised			Rear blade down		Rear outriggers + front blade down					
Š	<u> </u>	š		Stick length (m)			Stick length (m)			Stick length (m)				
mm	m³	kg	2.05	2.25	2.45	2.05	2.25	2.45	2.05	2.25	2.45			
3002)	0.17	220	•											
4002)	0.24	250	•											
5002)	0.28	250												
5502)	0.29	260	•		•			•						
6502)	0.36	290	•											
8502)	0.50	340	•											
1,0502)	0.65	380	•											
1,2502)	0.80	430	-											
3003)	0.18	210	•											
4003)	0.26	240	-		•									
5003)	0.30	240												
550 ³⁾	0.31	250	•											
6503)	0.39	270	•								•			
8503)	0.53	320	-			•	•							
1,0503)	0.71	370												
1,2503)	0.87	420	=					•						

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle

Max. material weight \blacksquare = \leq 1.8 t/m³, \blacksquare = \leq 1.5 t/m³, \triangle = \leq 1.2 t/m³, - = not authorised

¹⁾ comparable with SAE (heaped)

 $^{^{21}}$ Bucket with teeth (also available in HD-version) $^{-3}$ Bucket with cutting edge (also available in HD-version) Buckets up to 500 mm cutting width with limited digging depth

with Offset Mono Boom 4.30 m

Stic	k 2.05 n	n											Stic	k <mark>2.25</mark> r	n										
t≪	Undercarr stabilized	iage	3.0) m	4.5	m •	6.0	m	7.5 m				t∜	Undercarı stabilized		3.0	m •	4.5	m •	6.0	m •	7.5 m			
m	rear	front	5	峼	 5	峼	‡	d	 ⇒ 🖢	5	d	m	m	rear	front	5	ď	 5	d		ď	 ⇒ 🖢	 5	븁	m
7.5	- Blade Outriggers	- - Blade											7.5	- Blade Outriggers	- - Blade										
6.0	- Blade Outriggers	- - Blade			2.9* 2.9* 2.9*	2.9* 2.9* 2.9*				2.1* 2.1* 2.1*	2.1* 2.1* 2.1*	4.9	6.0	- Blade Outriggers	- - Blade			3.0* 3.0* 3.0*	3.0* 3.0* 3.0*				1.9* 1.9* 1.9*	1.9* 1.9* 1.9*	5.2
4.5	- Blade Outriggers	- Blade	5.1* 5.1* 5.1*	5.1* 5.1* 5.1*	3.6 4.0 4.5*	4.5* 4.5* 4.5*				2.0* 2.0* 2.0*	2.0* 2.0* 2.0*	5.9	4.5	- Blade Outriggers	- Blade			3.7 4.1 4.3*	4.3* 4.3* 4.3*	2.2 2.2* 2.3*	2.2* 2.2* 2.3*		1.8* 1.8* 1.8*	1.8* 1.8* 1.8*	6.1
3.0	- Blade Outriggers	- - Blade	6.2 7.0 7.7*	7.7* 7.7* 7.7*	3.4 3.7 5.3*	5.3* 5.3* 5.3*	2.1 2.4 3.8*	3.6 3.8* 3.8*		1.9 2.1* 2.1*	2.1* 2.1* 2.1*	6.4	3.0	- Blade Outriggers	- - Blade	6.3 7.2 7.3*	7.3* 7.3* 7.3*	3.4 3.8 5.1*	5.1* 5.1* 5.1*	2.1 2.4 3.9	3.6 3.9* 3.9*		1.8 1.9* 1.9*	1.9* 1.9* 1.9*	6.6
1.5	- Blade Outriggers	- Blade	5.3 6.1 10.1*	10.1* 10.1* 10.1*	3.0 3.4 5.7	5.3 6.2* 6.2*	2.0 2.3 3.7	3.4 4.6* 4.6*		1.8 2.0 2.4*	2.4* 2.4* 2.4*	6.6	1.5	- Blade Outriggers	- Blade	5.4 6.2 9.9*	9.9* 9.9* 9.9*	3.1 3.4 5.7	5.4 6.1* 6.1*	2.0 2.3 3.7	3.4 4.6* 4.6*		1.7 1.9 2.2*	2.2* 2.2* 2.2*	6.8
0	- Blade Outriggers	- - Blade	5.0 5.8 9.4*	9.4* 9.4* 9.4*	2.8 3.2 5.5	5.1 6.5* 6.5*	1.9 2.2 3.6	3.3 4.7* 4.7*		1.8 2.0 3.1*	3.1* 3.1* 3.1*	6.3	0	- Blade Outriggers	- Blade	5.0 5.8 9.5*	9.5* 9.5* 9.5*	2.8 3.2 5.5	5.1 6.5* 6.5*	1.9 2.2 3.6	3.3 4.7* 4.7*		1.7 1.9 2.7*	2.7* 2.7* 2.7*	6.5
-1.5	- Blade Outriggers	- Blade	5.0 5.8 9.0*	9.0* 9.0* 9.0*	2.8 3.2 5.4	5.0 6.0* 6.0*				2.1 2.3 3.9	3.6 4.5* 4.5*	5.6	-1.5	- Blade Outriggers	- Blade	5.0 5.7 9.2*	9.3* 9.3* 9.2*	2.8 3.1 5.4	5.0 6.1* 6.1*				1.9 2.2 3.7	3.4 3.9* 3.9*	5.9
-3.0	- Blade Outriggers	- - Blade	5.2 6.0 6.4*	6.4* 6.4* 6.4*						3.0 3.4 4.5*	4.5* 4.5* 4.5*	4.3	-3.0	- Blade Outriggers	- - Blade	5.1 5.9 6.9*	6.9* 6.9* 6.9*	2.8 3.2 4.6*	4.6* 4.6* 4.6*				2.7 3.1 4.4*	4.4* 4.4* 4.4*	4.6

Stick 2.45 m

	Undercarriage stabilized		iage	3.0 m		4.5 m		6.0 m		7.5 m			1	
1«	T	stabilized			į.		1		1		1	١	ı.	-0.
r	n	rear	front	5	반	5	바	5		5	반	5		m
		-	-									2.0*	2.0*	
7	7.5	Blade	-									2.0*	2.0*	3.6
		Outriggers	Blade									2.0*	2.0*	
		-	-			3.0*	3.0*					1.7*	1.7*	
(5.0	Blade	-			3.0*	3.0*					1.7*	1.7*	5.4
		Outriggers	Blade			3.0*	3.0*					1.7*	1.7*	
		-	-			3.7	4.0*	2.3	2.5*			1.7*	1.7*	
4	4.5	Blade	-			4.0*	4.0*	2.5*	2.5*			1.7*	1.7*	6.4
		Outriggers	Blade			4.0*	4.0*	2.5*	2.5*			1.7*	1.7*	
		-	-	6.4	6.8*	3.4	4.9*	2.2	3.6			1.7	1.7*	
3	3.0	Blade	-	6.8*	6.8*	3.8	4.9*	2.4	3.9*			1.7*	1.7*	6.8
		Outriggers	Blade	6.8*	6.8*	4.9*	4.9*	3.9*	3.9*			1.7*	1.7*	
		-	-	5.5	9.6*	3.1	5.4	2.0	3.4			1.6	1.9*	
1	1.5	Blade	-	6.3	9.6*	3.5	5.9*	2.3	4.5*			1.8	1.9*	6.9
		Outriggers	Blade	9.6*	9.6*	5.8	5.9*	3.7	4.5*			1.9*	1.9*	
		-	-	5.0	9.6*	2.8	5.1	1.9	3.3			1.6	2.4*	
()	Blade	-	5.8	9.6*	3.2	6.4*	2.1	4.7*			1.8	2.4*	6.7
		Outriggers	Blade	9.6*	9.6*	5.5	6.4*	3.6	4.7*			2.4*	2.4*	
		-	-	4.9	9.5*	2.7	5.0	1.8	3.3			1.8	3.2	
-1	1.5	Blade	-	5.7	9.5*	3.1	6.2*	2.1	4.0*			2.1	3.4*	6.1
		Outriggers	Blade	9.5*	9.5*	5.4	6.2*	3.5	4.0*			3.4*	3.4*	
		-	-	5.0	7.3*	2.8	4.8*					2.5	4.3*	
-3	3.0	Blade	-	5.8	7.3*	3.2	4.8*					2.8	4.3*	4.9
		Outriggers	Blade	7.3*	7.3*	4.8*	4.8*					4.3*	4.3*	

Height Can be slewed through 360° In longitudinal position of undercarriage Max. reach *Limited by hydr. capacity

The lift capacities on the load lift hook of the Liebherr quick coupler SWA 33 without attachment are stated in metric tons (t) and are valid on a firm, level supporting surface with blocked oscillating axle. These capacities can be slewed through 360° with the undercarriage in the transverse position. Capacities in the longitudinal position of the undercarriage ($+/-15^\circ$) are specified over the steering axle with the stabilizers raised and over the rigid axle with the stabilizers down. Indicated loads based on the ISO 10567 standard and do not exceed 75% of tipping or 87% of hydraulic capacity, or are limited by the permissible load of the load lift hook on the quick coupler (max. 5 t). Without the quick coupler, lift capacities will increase by up to 110 kg.

In accordance with the harmonised European Standard EN 474-5, hydraulic excavators used for lifting operations must be equipped with pipe fracture safety valves, an overload warning device, a load lift hook and a lift capacity chart.

Backhoe Bucket

with Offset Mono Boom 4.30 m (Heavy Counterweight)

Digging Envelope

with quick coupler			1	2	3
Stick length		m	2.05	2.25	2.45
Max. digging depth		m	4.55	4.75	4.95
Max. reach at ground level		m	7.60	7.80	8.00
Max. dumping height		m	6.05	6.20	6.35
Max. teeth height		m	8.80	8.95	9.10
Min. equipment radius		m	1.68	1.71	1.73
L with stick 2.05 m	4 with stick 2.05 m				
with ctick 2.25 m	5 with stick 2.25 m				

 1 with stick 2.05 m
 4 with stick 2.05 m

 2 with stick 2.25 m
 5 with stick 2.25 m

 3 with stick 2.45 m
 6 with stick 2.45 m

with set straight boom at max. equipment offset with vertical ditch walls

Digging Forces

without quick coupler		1	2	3
Max. digging force (ISO 6015)	kN	73.7	68.8	64.5
	t	7.5	7.0	6.6
Max. breakout force (ISO 6015)	kN	85.1	85.1	85.1
	t	8.7	8.7	8.7

Max. breakout force with ripper bucket

124.1 kN (12.6 t)

Operating Weight

The operating weight includes the basic machine (heavy counterweight) with 8 tyres plus intermediate rings, offset mono boom 4.30 m, stick 2.45 m, quick coupler SWA 33 and bucket 850 mm/ $0.50~\rm m^3$.

Undercarriage versions	Weight (kg)
A 914 Litronic with rear blade	15,700
A 914 Litronic with rear outriggers + front blade	16.900

Buckets Machine stability per ISO 10567* (75% of tipping capacity)

Cutting width	Capacity ISO 745111	Weight		Stabilizers raised			Rear blade down		Rear outriggers + front blade down					
చె	<u>ဗ</u>	×		Stick length (m)			Stick length (m)			Stick length (m)				
mm	m³	kg	2.05	2.25	2.45	2.05	2.25	2.45	2.05	2.25	2.45			
3002)	0.17	220	•											
4002)	0.24	250	•					•						
5002)	0.28	250												
5502)	0.29	260	-											
6502)	0.36	290	•											
8502)	0.50	340	•											
1,0502)	0.65	380	•											
1,2502)	0.80	430	•											
3003)	0.18	210	•	•		•		•			•			
4003)	0.26	240	•											
5003)	0.30	240												
550 ³⁾	0.31	250	•											
6503)	0.39	270												
8503)	0.53	320	-											
1,0503)	0.71	370												
1,2503)	0.87	420	-	•		•	•	•	-					

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle 11 comparable with SAE (heaped)

Max. material weight \blacksquare = \leq 1.8 t/m³, \blacksquare = \leq 1.5 t/m³, \triangle = \leq 1.2 t/m³, - = not authorised

³ Bucket with teeth (also available in HD-version) Buckets up to 500 mm cutting width with limited digging depth

with Offset Mono Boom 4.30 m (Heavy Counterweight)

Stic	k 2.05 n	n												St	tick	2.25 n	n											
* 4	Undercarr stabilized		3.0) m	4.5	m	6.0	m	7.5 r	n				A =		Undercarr stabilized	iage	3.0	m	4.5 m 6		6.0	6.0 m 7.5 m		n			
1 A	rear	front	5	d,	5	d,	5	d,	5	<u>L</u>	5	<u>L</u>	m	+	m I	rear	front	5	J.	- -5	J.	5	J.	 ∰	<u>,</u>	⊶ 5	<mark>4</mark>	m
""	-	-	4		4		4			_	4	_	""		""	-	-	-						4	-		_	""
7.5	Blade	-													7.5	Blade	-											
	Outriggers	Blade														Outriggers	Blade											
	-	-			2.9*	2.9*					2.1*	2.1*			, ,	- DI I	-			3.0*	3.0*					1.9*	1.9*	
6.0	Blade	- Blade			2.9*	2.9* 2.9*					2.1* 2.1*	2.1* 2.1*	4.9	•	6.0	Blade	- Blade			3.0* 3.0*	3.0* 3.0*					1.9* 1.9*	1.9* 1.9*	5.2
	Outriggers -	- Didue	5.1*	5.1*	3.9	4.5*					2.1	2.0*				Outriggers -	- Didue			3.9	4.3*	2.2*	2.2*			1.8*	1.8*	
4.5	Blade	_	5.1*	5.1*	4.3	4.5*					2.0*	2.0*	5.9		4.5	Blade	-			4.3*	4.3*	2.2*	2.2*			1.8*	1.8*	6.1
	Outriggers	Blade	5.1*	5.1*	4.5*	4.5*					2.0*	2.0*				Outriggers	Blade			4.3*	4.3*	2.3*	2.3*			1.8*	1.8*	
	-	-	6.7	7.7*	3.6	5.3*	2.3	3.8			2.1	2.1*				-	-	6.8	7.3*	3.6	5.1*	2.3	3.8			1.9*	1.9*	
3.0	Blade	-	7.5	7.7*	4.0	5.3*	2.6	3.8*			2.1*	2.1*	6.4	;	3.0	Blade	-	7.3*	7.3*	4.0	5.1*	2.6	3.9*			1.9*	1.9*	6.6
	Outriggers	Blade	7.7*	7.7* 10.1*	5.3* 3.3	5.3* 5.7	3.8*	3.8* 3.7			2.1*	2.1*				Outriggers	Blade	7.3* 5.9	7.3* 9.9*	5.1* 3.3	5.1* 5.7	3.9* 2.2	3.9* 3.7			1.9*	1.9* 2.2*	
1.5	Blade	_	6.6	10.1*	3.7	6.2*	2.5	4.6*			2.1	2.4*	6.6		1.5	Blade	_	6.7	9.9*	3.7	6.1*	2.4	4.6*			2.0	2.2*	6.8
2.0	Outriggers	Blade	10.1*	10.1*	6.1	6.2*	3.9	4.6*			2.4*	2.4*	0.0		0	Outriggers	Blade	9.9*	9.9*	6.1*	6.1*	3.9	4.6*			2.2*	2.2*	0.0
	-	-	5.5	9.4*	3.1	5.4	2.1	3.6			2.0	3.1*				-	-	5.5	9.5*	3.1	5.4	2.1	3.6			1.9	2.7*	
0	Blade	-	6.3	9.4*	3.5	6.5*	2.4	4.7*			2.2	3.1*	6.3	(0	Blade	-	6.3	9.5*	3.5	6.5*	2.3	4.7*			2.1	2.7*	6.5
	Outriggers	Blade	9.4*	9.4*	5.8	6.5*	3.8	4.7*			3.1*	3.1*				Outriggers	Blade	9.5*	9.5*	5.8	6.5*	3.8	4.7*			2.7*	2.7*	
-1.5	Blade	_	5.5 6.3	9.0* 9.0*	3.0 3.4	5.4 6.0*					2.3	3.9 4.5*	5.6		1.5	- Blade	-	5.4 6.2	9.3* 9.3*	3.0 3.4	5.3 6.1*					2.1	3.6 3.9*	5.9
-1.5	Outriggers	Blade	9.0*	9.0*	5.7	6.0*					4.1	4.5*	3.0		1.5	Outriggers	Blade	9.2*	9.2*	5.7	6.1*					3.9	3.9*	3.7
	-	-	5.7	6.4*	0.7	0.0					3.3	4.5*				-	-	5.6	6.9*	3.1	4.6*					3.0	4.4*	
-3.0	Blade	-	6.4*	6.4*							3.7	4.5*	4.3	-;	3.0	Blade	-	6.4	6.9*	3.5	4.6*					3.4	4.4*	4.6
	Outriggers	Blade	6.4*	6.4*							4.5*	4.5*				Outriggers	Blade	6.9*	6.9*	4.6*	4.6*					4.4*	4.4*	

Stick 2.45 m

		Undercarr	iage	3.0	m	4.5	m	6.0	m	7.5	m			
1₹		stabilized			P		P		P		P		P 1	-0"
n	ı	rear	front	5	바	 5	바	5	造	 5	반	5	造	m
		-	-									2.0*	2.0*	
7	.5	Blade	-									2.0*	2.0*	3.6
		Outriggers	Blade									2.0*	2.0*	
		-	-			3.0*	3.0*					1.7*	1.7*	
6	.0	Blade	-			3.0*	3.0*					1.7*	1.7*	5.4
		Outriggers	Blade			3.0*	3.0*					1.7*	1.7*	
		-	-			3.9	4.0*	2.4	2.5*			1.7*	1.7*	
4	.5	Blade	-			4.0*	4.0*	2.5*	2.5*			1.7*	1.7*	6.4
		Outriggers	Blade			4.0*	4.0*	2.5*	2.5*			1.7*	1.7*	
		-	-	6.8*	6.8*	3.7	4.9*	2.3	3.8			1.7*	1.7*	
3	.0	Blade	-	6.8*	6.8*	4.1	4.9*	2.6	3.9*			1.7*	1.7*	6.8
		Outriggers	Blade	6.8*	6.8*	4.9*	4.9*	3.9*	3.9*			1.7*	1.7*	
		-	-	5.9	9.6*	3.3	5.7	2.2	3.7			1.8	1.9*	
1	.5	Blade	-	6.7	9.6*	3.7	5.9*	2.4	4.5*			1.9*	1.9*	6.9
		Outriggers	Blade	9.6*	9.6*	5.9*	5.9*	3.9	4.5*			1.9*	1.9*	
		-	-	5.5	9.6*	3.1	5.4	2.1	3.5			1.8	2.4*	
0		Blade	-	6.2	9.6*	3.5	6.4*	2.3	4.7*			2.0	2.4*	6.7
		Outriggers	Blade	9.6*	9.6*	5.8	6.4*	3.8	4.7*			2.4*	2.4*	
	_	-	-	5.4	9.5*	3.0	5.3	2.0	3.5			2.0	3.4*	
-1	.5	Blade	Ī	6.2	9.5*	3.4	6.2*	2.3	4.0*			2.2	3.4*	6.1
		Outriggers	Blade	9.5*	9.5*	5.7	6.2*	3.7	4.0*			3.4*	3.4*	
_	_	-	-	5.5	7.3*	3.0	4.8*					2.7	4.3*	
-3	.U	Blade	-	6.3	7.3*	3.4	4.8*					3.1	4.3*	4.9
		Outriggers	Blade	7.3*	7.3*	4.8*	4.8*	l		l		4.3*	4.3*	

Height Can be slewed through 360° In longitudinal position of undercarriage Max. reach *Limited by hydr. capacity

The lift capacities on the load lift hook of the Liebherr quick coupler SWA 33 without attachment are stated in metric tons (t) and are valid on a firm, level supporting surface with blocked oscillating axle. These capacities can be slewed through 360° with the undercarriage in the transverse position. Capacities in the longitudinal position of the undercarriage (*/-15°) are specified over the steering axle with the stabilizers raised and over the rigid axle with the stabilizers down. Indicated loads based on the ISO 10567 standard and do not exceed 75% of tipping or 87% of hydraulic capacity, or are limited by the permissible load of the load lift hook on the quick coupler (max. 5 t). Without the quick coupler, lift capacities will increase by up to 110 kg.

In accordance with the harmonised European Standard EN 474-5, hydraulic excavators used for lifting operations must be equipped with pipe fracture safety valves, an overload warning device, a load lift hook and a lift capacity chart.

Clamshell Grab

with Two-Piece Boom 4.85 m

Digging Envelope

with quick coupler		1	2	3	4
Stick length	m	2.05	2.25	2.45	2.65
Max. digging depth	m	6.30	6.50	6.70	6.90
Max. reach at ground level	m	8.25	8.45	8.65	8.85
Max. dumping height	m	6.00	6.15	6.30	6.45

Operating Weight

The operating weight includes the basic machine with 8 tyres plus intermediate rings, two-piece boom $4.85 \, \text{m}$, stick $2.45 \, \text{m}$, quick coupler SWA 33 and clamshell grab GM $8B/0.40 \, \text{m}^3$ (800 mm without ejector).

Undercarriage versions	Weight (kg)
A 914 Litronic with rear blade	15,900
A 914 Litronic with rear outriggers + front blade	17,100
A 914 EW Litronic with rear blade	16,300
A 914 EW Litronic with rear outriggers + front blade	17,300

Clamshell Grabs GM 8B Machine stability per ISO 10567* (75% of tipping capacity)

Width of clamshells	Capacity	Weight			ilizers ised			Rear blade down				Rear ou + front do				W lizers sed		EW Rear blade down				EW Rear outriggers + front blade down				
ě Ķ	ొ	×	;	Stick le	ngth (m)		Stick le	ngth (m	1)		Stick lei	ngth (m)	;	Stick le	ngth (m)		Stick le	ngth (m	1)	:	Stick le	ngth (m)
mm	m³	kg	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65
3201)	0.17	830																								
4001)	0.22	870																								
6001)	0.30	860																								
8001)	0.40	910																								
1,0001)3)	0.80	1,010	-	-	-	-	Δ	Δ	-	-					Δ	Δ	Δ	-			Δ					
3202)	0.17	880																								
4002)	0.22	930																								
6002)	0.30	950																								
8002)	0.40	1,020																								

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle

Max. material weight \blacksquare = $\leq 1.8 \text{ t/m}^3$, \blacksquare = $\leq 1.5 \text{ t/m}^3$, \triangle = $\leq 1.2 \text{ t/m}^3$, - = not authorised

¹⁾ without ejector

²⁾ with ejector

³⁾ Shells for loose material

Clamshell Grabs

Clamshell Grabs GM 8B Machine stability per ISO 10567* (75% of tipping capacity)

Width of clamshells	Capacity	ght		Stabilizers raised Stick length (m)			Rear blade down			Rear outriggers + front blade down				Stabilizers raised					EW Rear blade down				EW Rear outriggers + front blade down			
		Weight							ngth (m)			Stick ler				tick len				tick ler					ngth (m)	
mm	m ³	kg			2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65
Two-piece		4.85 m (l 830	neavy co		eight)	_	_	_	_		_	_	_	_			_		_		_		_	_		_
320 ¹⁾ 400 ¹⁾	0.17	870		•	•	-	-	-	-			-	•			-	-		•	-	-		-	-	•	
6001)	0.30	860				-		-	-	-		-	-			-	-		-	-	-		-	-	-	-
8001)	0.40	910		•	-			-	•			-	-			-			•				-			
1,0001)3)	0.80	1,010	Δ	Δ	-	_		Δ	Δ	Δ							Δ	Δ								
3202)	0.17	880																								
4002)	0.22	930																								
6002)	0.30	950																								
8002)	0.40	1,020		•				•	•			•	•			•			•						•	•
Mono boo							ı				ı															
3201)	0.17	830		•	-	-		-	-	-		-	•	-	-	-	-	-	-	-	-	-	-	-		_
4001)	0.22	870	-	-	-	-			-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-
600 ¹⁾	0.30	860 910	-			-	-	•	•			•	•	-	-	-	-	-	-	-	-	-	-	-	-	_
1,0001)3)	0.80	1,010	Δ	Δ	-	-	70	Δ	Δ	Δ		-	-	77	_	_	_	_	_	_	_	-	_	-	_	_
3202)	0.17	880		_								-	•		-	-	-	-	-	-	-	-	-	-	-	_
4002)	0.22	930													-	-	-	-	-	-	-	-	-	-	-	-
6002)	0.30	950													-	-	-	-	-	-	-	-	-	-	-	_
8002)	0.40	1,020													-	-	-	-	-	-	-	-	-	-	-	-
Offset two	o-piece	boom 4.	90 m																							
3201)	0.17	830				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
4001)	0.22	870				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
6001)	0.30	860	•	•		-		•	•	-		•	•	-	-	-	-	-	-	-	-	-	-	-	-	-
8001)	0.40	910				-				-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,0001)3)	0.80	1,010	-	-	-	-	_	-	_	-		-	-	-	-	-	-	-	-	-	-	-	-	-	_	_
320 ²⁾ 400 ²⁾	0.17 0.22	880 930		•	-	-		-	-	_		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6002)	0.22	950		•	•	-		-	•	_		-	•	_	_	_	_	_	_	_	_	-	_	-	_	_
8002)	0.40	1,020		7	Δ	-		-	-	_		-	-	_	_	-	_	-	_	_	_	-	-	-	-	_
Offset two			_			eiaht)	_				_	_														
3201)	0.17	830		, oou		-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
4001)	0.22	870				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
6001)	0.30	860				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
8001)	0.40	910				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
1,0001)3)	0.80	1,010	-	-	-	-	Δ	Δ	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-
3202)	0.17	880		-		-		_	_	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4002)	0.22	930	-	•	•	-	-	•	•	-		•	•	-	-	-	-	-	-	-	-	-	-	-	-	_
6002)	0.30	950		•		-		•		-		•		-	-	-	-	-	-	-	-	-	-	-	-	-
800 ²⁾ Offset mo	0.40	1,020	-	-	-	-	-	•	-	_	-	•	•	-	-	-	-	-	-	-	-	- 1	-	-	_	_
3201)	0.17	830				_				_				_	_	_	_	- 1	_	_	_	- 1	_	_	_	_
4001)	0.22	870		•		-		-		_		-		_	_	_	_	_	_	_	_	_	_	-	_	_
6001)	0.30	860		-	-	-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
8001)	0.40	910				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
1,0001)3)	0.80	1,010	Δ	Δ	-	-			Δ	-				-	-	-	-	-	-	-	-	-	-	-	-	-
3202)	0.17	880				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
4002)	0.22	930		•		-	•			-		•		-	-	-	-	-	-	-	-	-	-	-	-	-
6002)	0.30	950				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
8002)	0.40	1,020				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle 1) without ejector

Max. material weight \blacksquare = $\leq 1.8 \text{ t/m}^3$, \blacksquare = $\leq 1.5 \text{ t/m}^3$, \triangle = $\leq 1.2 \text{ t/m}^3$, - = not authorised

²⁾ with ejector

³⁾ Shells for loose material

Clamshell Grabs

Clamshell Grabs GMZ 22 Machine stability per ISO 10567* (75% of tipping capacity)

Stick length (m) Stick lengt			2.25 2.45	2.65
Two-piece boom 4.85 m 500 ¹¹ 0.16 800 600 ¹² 0.20 850 700 ¹³ 0.24 890 800 ¹³ 0.28 920 800 ¹³ 0.34 980 800 ¹³ 0.34 980 800 ¹³ 0.36 840 800 ¹³ 0.20 890 800 ¹³ 0.20 890 800 ¹³ 0.20 890 800 ¹³ 0.20 890 800 ¹³ 0.24 930 800 ¹³ 0.24 930 800 ¹³ 0.28 960 800 800 ¹³ 0.28 960 800 800 ¹³ 0.28 960 800 800 800 800 800 800 800 800 800 8	:	=	: :	
500 ¹³ 0.16 800 600 ¹³ 0.20 850 700 ¹³ 0.24 890 800 ¹³ 0.28 920 1,000 ¹³ 0.34 980 500 ²³ 0.16 840 600 ²³ 0.20 890 700 ²³ 0.24 930 800 ² 0.28 960	i			
600 ¹³ 0.20 850 700 ¹³ 0.24 890 800 ¹³ 0.28 920 1,000 ¹³ 0.34 980 500 ²³ 0.16 840 600 ²³ 0.20 890 700 ²³ 0.24 930 800 ²³ 0.28 960	i			_
800 ¹ 0.28 920				
$egin{array}{cccccccccccccccccccccccccccccccccccc$	•			-
5002) 0.16 840 6002) 0.20 890 7002) 0.24 930 8002) 0.28 960			: :	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
800^{2} 0.28 960 \blacksquare		•		-
				-
			: :	
Two-piece boom 4.85 m (heavy counterweight)		_		_
5001 0.16 800				
600 ¹) 0.20 850	-		: :	
700 ¹) 0.24 890	-		: :	-
1,0001 0.34 980				
5002 0.16 840	•	•		•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$: :	-
8002 0.28 960				
1,0002 0.34 1,035		•		•
Mono boom 4.60 m		1		
$500^{1)}$ 0.16 800 \blacksquare	-	-		-
7001 0.24 890	-	-		_
8001 0.28 920	-	-		-
1,0001 0.34 980 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-	-		-
500^2 0.16 840 \blacksquare	-	-		-
700 ²⁾ 0.24 930	-	-		-
800^{2} 0.28 960 \blacksquare	-	-		-
1,0002 0.34 1,035	-	-		-
Offset two-piece boom 4.90 m 500 ¹⁾ 0.16 800 ■ ■ ■ - ■ ■ - ■ ■ -	_	l -		_
600 ¹⁾ 0.20 850	-	-		-
7001 0.24 890	-	-		-
800^{10} 0.28 920 \blacksquare \blacksquare \blacksquare - \blacksquare \blacksquare \blacksquare - \blacksquare \blacksquare -	-	-		-
$1,000^{1)}$ 0.34 980 \blacksquare	-	-		_
600 ²⁾ 0.20 890	-	-		-
7002) 0.24 930	-	-		-
800^{2} 0.28 960 \blacksquare	-	-		-
1,000 ²⁾ 0.34 1,035	_	-		_
5001) 0.16 800	-	-		-
6001 0.20 850	-	-		-
$700^{1)}$ 0.24 890 \blacksquare	-	-		-
$800^{1)}$ 0.28 920 \blacksquare	-	-		-
5002 0.16 840	-	-		-
6002 0.20 890	-	-		-
700^{2} 0.24 930 \blacksquare	-	-		-
1,0002 0.34 1,035		-		-

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle

Max. material weight \blacksquare = \leq 1.8 t/m³, \blacksquare = \leq 1.5 t/m³, \triangle = \leq 1.2 t/m³, - = not authorised

¹⁾ without ejector

²⁾ with ejector

Ditch Cleaning Buckets

Ditch Cleaning Buckets Machine stability per ISO 10567* (75% of tipping capacity)

Cutting width	Capacity ISO 7451 ¹⁾	Weight		lizers sed		Rear b dov		+ front blade Stat						EW stabilizers raised			EW Rear blade down			EW Rear outriggers + front blade down			
			Stick le			Stick len				ngth (m)				igth (m)			tick ler				tick len		
mm	m³	kg	2.05 2.25	2.45 2.65	2.05	2.25	2.45 2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65
	ce boom					_					_	_			_								
1,5003)	0.50	360			_	-				-	•		-	-	•	-	-	_	-	-	-	-	-
1,6002	0.55	640				-			-	-			•	-		-	-	-	-	•	-	•	
2,000 ²⁾ 2,000 ³⁾	0.50 0.48	660 350					• •				-		•	-		•	-	-	-	-	-	•	•
2,0003)	0.46	390				-	: :		-	-	=		-	-	-	•	-	-		-	-	-	
	ce boom		neavy counters		-	-		-	-	-	-	-	•	-	-	•	•	-	_	•	•	•	•
1,5003)	0.50	360	leavy counter	weight)		-			-	-				-	-		-		- 1	-			
1,6002)	0.55	640				-			-	-	-			-									
2,0002)	0.50	660				-	1 1			-			-	-		-	-	-	-	-	-	-	-
2,0003)	0.48	350																					
2,0003)	0.65	390				-				•									-				
Mono bo		m			1			'															
1,5003)	0.50	360										-	-	-	-	-	-	-	- 1	-	-	-	-
1,6002)	0.55	640										-	-	-	-	-	-	-	-	-	-	-	-
2,0002)	0.50	660										-	-	-	-	-	-	-	-	-	-	-	-
2,0003)	0.48	350										-	-	-	-	-	-	-	-	-	-	-	-
2,0003)	0.65	390										-	-	-	-	-	-	-	-	-	-	-	-
		boom 4.	90 m																				
1,5003)	0.50	360		-	•		-				-	-	-	-	-	-	-	-	-	-	-	-	-
1,6002)	0.55	640		-			-				-	-	-	-	-	-	-	-	-	-	-	-	-
2,0002)	0.50	660	-	-		-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,0003)	0.48	350					-				-	-	-	-	-	-	-	-	-	-	-	-	-
2,0003)	0.65	390			•	•	-		-	•	-	-	-	-	-	-	-	-	- 1	-	-	-	-
	wo-piece 0.50	360 360	90 m (heavy co	ounterweight)	_	_	_	_	_	_		ı											
1,500 ³⁾	0.55	640							-		_	-	-	-	_	_	_		-	_	-	-	_
2,0002)	0.50	660				-	-		-		_	_	-	_		_	_	_			-	-	
2,0003	0.30	350				-			-	-	_	_	_	_		_	_	_		_		-	_
2,0003	0.46	390				-				-	_	-	_	_	_	_	_	-	_	_	_	_	_
		m 4.30 m		-	_	_	_	_	_														
1,5003)	0.50	360					-				-	-	-	-	- 1	-	-	-	-	-	-	-	-
1,6002)	0.55	640		-			-				-	-	-	-	-	-	-	-	-	-	-	-	-
2,0002)	0.50	660								•	-	-	-	-	-	-	-	-	-	-	-	-	-
2,0003)	0.48	350		-			-				-	-	-	-	-	-	-	-	-	-	-	-	-
2,0003)	0.65	390		-			-				-	-	-	-	-	-	-	-	-	-	-	-	-

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle ¹⁾ comparable with SAE (heaped)

Max. material weight \blacksquare = $\leq 1.8 \text{ t/m}^3$, \blacksquare = $\leq 1.5 \text{ t/m}^3$, \triangle = $\leq 1.2 \text{ t/m}^3$, - = not authorised

²⁾ with 2 x 50° rotator

³⁾ rigid ditch cleaning bucket

Tilt Buckets

Tilt Buckets Machine stability per ISO 10567* (75% of tipping capacity)

Cutting width	acity 7451 ¹⁾	Weight		Stabilizers Rear blade raised down					Rear ou + front do	blade	S			W lizers sed			Rear	W blade wn			Rear ou + fron	W itriggers t blade own	triggers : blade			
S	Cap ISO	We	5	Stick lei	ngth (m)		Stick le	ngth (m)		Stick le	nath (m	1)		Stick le	nath (m)	9	Stick le	ngth (m)		stick le	ngth (m)	j
mm	m³	kg	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05		2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65	2.05	2.25	2.45	2.65
Two-pie	ce boom	4.85 m									'												'			
1,5002)	0.60	660																								
Two-pie	ce boom	4.85 m (heavy c	ounterv	weight)																					
1,5002)	0.60	660																								
Mono bo	om 4.60	m																								
1,5002)	0.60	660													-	-	-	-	-	-	-	-	-	-	-	-
Offset to	wo-piece	boom 4.	.90 m																							
1,5002)	0.60	660			Δ	-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
Offset to	wo-piece	boom 4.	90 m (h	eavy co	ounterw	eight)																				
1,5002)	0.60	660				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-
Offset m	nono boo	m 4.30 n	1																							
1,5002)	0.60	660				-				-				-	-	-	-	-	-	-	-	-	-	-	-	-

^{*} Indicated loads are based on ISO 10567 and do not exceed 75% of tipping or 87% of hydraulic capacity, max. stick length without quick coupler, lifted 360° on firm with blocked oscillating axle

Max. material weight \blacksquare = $\leq 1.8 \text{ t/m}^3$, \blacksquare = $\leq 1.5 \text{ t/m}^3$, \triangle = $\leq 1.2 \text{ t/m}^3$, - = not authorised

¹⁾ comparable with SAE (heaped)

²⁾ with 2 x 50° rotator

•=• Undercarriage

Dual-circuit braking system	•
Rear stabilizer blade	+
Rear + front stabilizer blade	+
Lighting trailer coupling	+
Trailer coupling with bolt, automatic	+
Digging brake, automatic	•
Tyres (twin tyres) Liebherr EM 22 290/90-20	+
Tyres (twin tyres) Mitas EM 22	•
Individual control outriggers	+
Travel speed levels (four)	•
Tilt function of trailer, hydraulic	+
Mudguards (rear and front)	+
Load holding valve on each stabilization cylinder	•
Powershift transmission, semiautomatic	•
Parking brake, maintenance-free	•
Rear outriggers + front stabilizer blade	+
Tyres, variants	+
Protection for piston rods, stabilizer cylinder	+
Speeder**	+
Storage compartment left	•
Storage compartment right	+
Undercarriage EW 2.75 m/9'	+
Tool equipment, extended	+

Uppercarriage

Uppercarriage right side light, 1 piece, LED	+
Uppercarriage rear light, 2 pieces, LED	+
Refuelling system with filling pump	+
Main battery switch for electrical system	•
Engine hood with gas spring	•
Amber beacon, at uppercarriage, LED double flash	+
Service doors, lockable	•

Hydraulic System

· · · · · · · · · · · · · · · · · · ·	
Shut-off valve between hydraulic tank and pump(s)	•
Pressure test fittings	•
Accumulator for controlled lowering of the equipment with the engine shut down	•
Hydraulic oil filter with integrated microfilter	•
Liebherr hydraulic oil from −20 °C to +40 °C	•
Liebherr hydraulic oil, biologically degradable	+
Liebherr hydraulic oil, specially for warm or cold regions	+
Bypass filter	+
Switchover high pressure circuit and tipping cylinder	+
Switchover high pressure circuit and two-piece boom	+

Diesel Engine

•	
Fuel anti-theft device	+
Liebherr particle filter	•
Reversible fan drive, fully automatic	+
Automatic engine shut-down (time adjustable)	+
Preheating fuel	+
Preheating coolant	+
Preheating engine oil	+

Cah

Cab	
Storage compartment	•
Stabilizer, proportional control on left joystick	•
Cab lights rear, LED	+
Cab lights front, halogen (under rain cover)	•
Cab lights front, LED (above rain cover)	+
Cab lights front, LED (under rain cover)	+
Exterior mirror, electrical adjustable, with heating	+
Mechanical hour meters, readable from outside the cab	•
Roof window made from impact-resistant laminated safety glass	•
Slewing gear brake Comfort, button on the left or right joystick	+
Operator's seat Standard	•
Operator's seat Comfort	+
Operator's seat Premium	+
Driving alarm (acoustic signal is emitted during travel, can be switched ON / OFF)	+
Fire extinguisher	+
Front screen made from impact-resistant laminated safety glass - not adjustable	+
Windscreen retractable (including upper part)	•
Intermittent windscreen wiper with wiper washer	•
Cruise control	•
Dome light	•
Joystick steering	+
Coat hook	•
Automatic air conditioning	•
Fuel consumption indicator	•
Electric cooler	+
Steering wheel, wide version (cost-neutral option)	+
Steering column adjustable horizontally	•
LiDAT, vehicle fleet management	•
Emergency exit rear window	•
Positioning swing brake	+
Proportional control	•
Radio Comfort, control via display with handsfree set	+
Preparation for radio installation	•
Rain cover over front window opening	•
ROPS cab protection	•
Back-up alarm (acoustic signal is emitted traveling backward, can not be switched off)	+
Amber beacon, on cab, LED double flash	+
Tinted windows	•
Windscreen wiper, roof	+
Windshield wiper, entire windscreen	•
Door with sliding window	•
FOPS top guard	+
FGPS front guard, tiltable	+
Right side window and windshield made from laminated safety glass	•
Sun visor	+
Sun blind	•
Auxiliary heating, adjustable (week time switch)	+
Left control console, folding	•
Electronic immobilizer	+
Cigarette lighter	•

All illustrations and data may differ from standard equipment. Subject to change without notice. Printed in Germany by DHW \cdot RG-BK \cdot LHB/VF-12284316-1-02.22_enGB

Equipment

Equipment

Boom lights, 2 pieces, halogen	•
Boom lights, 2 pieces, LED	+
Stick lights, 2 pieces, LED	+
Travel vibration damper	+
High pressure circuit incl. unpressurised return line and Tool Control	+
Electronic lift limitation	+
Security for hoist cylinder for hydraulic attachments	+
Load holding valve tipping cylinder	+
Load lug on stick	+
Leak oil line, additional for attachments	+
Liebherr ditch cleaning bucket	+
Liebherr quick coupler, hydraulic or mechanical	+
Liebherr tilt bucket	+
Liebherr tilt rotator	+
Liebherr sorting grab	+
Liebherr backhoe bucket	+
Liebherr tooth system	+
Liebherr clamshell grab	+
Medium pressure circuit incl. lines	+
Mono boom	+
Pipe fracture safety valves hoist cylinders	•
Pipe fracture safety valve stick cylinder	•
Return line, pressureless (in high pressure circuit option included)	+
Hose quick coupling at end of stick	•
Quick coupling system LIKUFIX	+
Protection for piston rod, tipping cylinder	+
Protection for bottom side of stick	+
Tool Control, 20 attachment adjustments selectable over the display	+
Overload warning device	•
Two-piece boom	+
Offset two-piece boom	+

Complete Machine

-	
Lubrication	
Lubrication undercarriage, manually - decentralised (grease points)	•
Lubrication undercarriage, manually - centralised (one grease point)	+
Central lubrication system for uppercarriage and equipment, automatically	
(without quick coupler and connecting link)*	•
Centralised lubrication extended for quick coupler	+
Centralised lubrication extended for connecting link	+
Special coating	
Custom painting for attachments	+
Special coating, variants	+
Monitoring	
Rear view monitoring with camera	•
Side view monitoring with camera	•
Skyview 360° (side camera not available)	+

Options and/or special equipment, supplied by vendors other than Liebherr, are only to be installed with the knowledge and approval of Liebherr in order to retain warranty.

Liebherr-Hydraulikbagger GmbH

^{• =} Standard, + = Option

^{* =} country-dependent, ** = depending upon the country partially only 25 km/h permitted