Datenblatt

Axialkolbenmotor DMVA

Die Liebherr-Axialkolbendoppelmotoren der Baureihe DMVA sind in Schrägscheibenbauweise für den offenen und geschlossenen Kreislauf konzipiert und wurden speziell für den Einsatz in mobilen Arbeitsmaschinen unter rauen Umgebungsbedingungen entwickelt.

Das inverse Triebwerk mit einem Schwenkwinkel von 22° sorgt für einen hohen Wirkungsgrad und eine große Leistungsdichte und ist somit ideal für Anwendungen, die ein verstellbares Schluckvolumen erfordern.

Die Anbau-Verstelldoppelmotoren sind in den Nenngrößen von 165–108 bis 215–165 verfügbar. Der Nenndruck der Einheiten beträgt 450 bar und der Höchstdruck liegt bei 500 bar absolut.

Die Triebwerke sind einzeln oder parallel verstellbar. Eine gemeinsame Anschlussplatte vereinfacht die Montage der Hydraulikleitungen. Die Baureihe DMVA ist mit allen gängigen Reglern verfügbar. Ein Drehzahlsensor bzw. die Vorbereitung für einen Sensor sind als Option verfügbar.

Die vorhandene Durchtriebsmöglichkeit kann sowohl für den Anbau einer Bremse als auch für Tandemeinheiten genutzt werden (Axialkolben-Mehrkreismotor).

Gültig für:

DMVA 165-108/DMVA 165-165 DMVA 165-215/DMVA 215-165

Merkmale:

Axialkolbendoppelmotor Baureihe D Offener und geschlossener Kreislauf

Regelungsarten:

Diverse Regelungsarten wählbar

Druckbereich:

Nenndruck $p_N = 450$ bar Höchstdruck $p_{max} = 500$ bar

Dokumentidentifikation:

Identnummer: 11372600 Ausgabe: 02/2023 Gültig für: DMVA(D)

Autoren: Liebherr - Abteilung VH13

Version: 1.2

Inhaltsverzeichnis

1 T	ypenschlüssel	3
2 T	echnische Daten	5
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Wertetabelle Drehrichtung Zulässiger Druckbereich Druckflüssigkeiten Temperatur Wellendichtring Gehäusespülung	5 6 7 9 10 16
3 A	Insteuerungs- und Regelungsart	17
3.1 3.2 3.3 3.4	Regelungsarten Standard- Hydraulikschemen Regelungsfunktionen Elektrische Komponenten	17 18 22 26
4 E	inbaubedingungen	30
4.1 4.2	Generelle Informationen zur Projektierung Einbauvarianten	30 32
5 A	.bmessungen	35
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10		35 37 37 38 44 44 45 46 46
5.11 5.12	NG 215-165, Anbauflansch NG 215-165, Wellenende	48 48
5.13 5.14		49 50

1 Typenschlüssel

DMVA		/			1	W		1	Α	0			
1. 2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.
1. Motorentyp													
Baureihe-D / Motor / \	√erst@	ellbar / A	nbau							[DMVA		
2. Kreislaufart													
offen											0		
geschlossen										•			G
3. Nenngröße (NG)												
							165-108	165-165	165-215	215-165			
4. Restschluckvol	lume	en V _{g mi}	n					'	<u> </u>				
Wert in cm³ / U für beide Axialkolbeneinheiten getrennt durch "/" eintragen, z.B.: 000 / 055										•			
5. Ansteuerung /	Reg	elungsa	art										
Elektro-proportional (negative Kennlinie)												EL	
Elektro-proportional (p	ositiv	ve Kennlir	nie)										EL1
Elektro-proportional (n	egati	ive Kennli	inie) / Dru	ıckabsch	neidung							EL	DA
Elektro-proportional (n	egati	ive Kennli	inie) / Dru	ıckabsch	neidung n	nit Übers	teuerung					EL	- DAl
Hydraulisch-proportion	nal (n	egative K	ennlinie)	/ Drucka	bschneidı	ung						SE) - DA
Hydraulische Verstellu	ıng Ho	ochdruck	abhängig										HD
6. Ausführung													
											1		
7. Drehrichtung (E	Blick	auf An	triebsw	elle)									
wechselnd											W		
8. Anbauflansch													
Anbauflansch ISO 3019	2				och-Anba : "Ø180" e			•	•	•			31
Alibaurtansch 190 3013	Ø200B4 (Vier-Loch-Anbauflansch) im Bestelltext "Ø200" eintragen					-			•		31		
9. Wellenende	•								•	•	•		
Zahnwelle	Zahnwelle DIN 5480 1												
10. Anschlüsse													
ISO 6162-2 / SAE J518	ISO 6162-2 / SAE J518-2, Hochdruckanschluss 6000 psi								Α				
11. Zusatzausrüst	ung												
ohne Anbauten	ohne Anbauten						0						

1 Typenschlüssel

165-108	165-165	165-215	215-165

12. Durchtrieb

ohne Durchtrieb		•	0
Sonderdurchtrieb			K

13. Ventile

ohne Ventil			0
Spülung geschlossener Kreislauf			S0

14. Sensorik

ohne Sensor			0
mit Drehzahlsensor			D*
mit Winkelsensor			W*

^{*} Kombinierbar, Trennung durch Bindestrich z.B.: D-W

- = Verfügbar
- = Auf Anfrage
- = Nicht Verfügbar

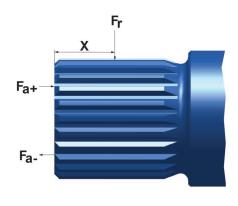
Hinweis

Kontaktadressen für Anfragen befinden sich auf der Rückseite dieses Dokumentes.

2.1 Wertetabelle

Nenngrösse			165-108	165-165	165-215	215-165	
	V _{g max}	cm ³	167.8-107.7	167.8-167.8	167.8-216.6	216.6-167.8	
Schluckvolumen	V _{g min}	cm ³	0 - 80% von V _{g max} , Wert in [cm ³ /U] angegeb Andere Werte auf Anfrage				
Schluckstrom bei n _{max}	qv _{max}	l/min	827	1007	1038	1038	
Max. Drehzahl bei bei $V_{g max}$ und $\Delta p^* = 430$ bar	n _{max}	min ⁻¹	3000	3000	2700	2700	
Max. Drehzahl bei V _{g max} = 0.65 und Δp = 200 bar	n _{max}	min ⁻¹	4500	4500	4100	4100	
Abtriebsdrehmoment bei V _{g max} und Δp = 430 bar	M _{max}	Nm	1885	2297	2631	2631	
Drehmomentkonstante bei V _{g max}	M _K	Nm/ bar	4.38	5.34	6.12	6.12	
Abtriebsleistung bei qv _{max} und Δp = 430 bar	p _{max}	kW	593	722	744	744	
Verdrehsteifigkeit	Nm/rad	d * 10 ³	353	353	353	511	
Massenträgheitsmoment Triebwerk	J _{TW}	kgm ²	0.0464	0.0626	0.0773	0.0773	
Masse (ca.)	m	kg	140	152	179	179	

Hinweis


Die angegebenen Werte (Maximaldaten) sind theoretische Werte, gerundet, ohne Wirkungsgrade und Toleranzen

2.1.1 Maximale Radial- und Axialkraftbelastung der Triebwelle

Hinweis

Theoretische gerundete Werte, ohne Berücksichtigung von den Wirkungsgraden, Toleranzen, Verschmutzung der Druckflüssigkeit und Durchbiegung der Triebwelle.

DB-V-001

Nenngröße			165-108	165-165	165-215	215-165	
Max. Radialkraft	F _{r max}	N		Werte auf Anfrage			
Max. Axialkraft	F _{a± max}	N					

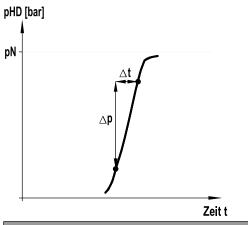
Hinweis

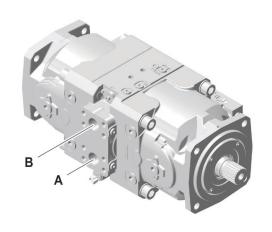
Die Radial- und Axialkräfte sind abhängig vom Lastzyklus wie Druck, Drehzahl und Kraftrichtung. Bei geplantem Riementrieb oder erwarteten dauerhaften Axial- und/oder Radialkräften bitte Rücksprache mit Liebherr.

2.2 Drehrichtung

DMVA			/			1	W		1	Α	0			
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.

Die Drehrichtung wird mit Blick auf die Triebwelle angegeben, wie im Bild dargestellt.


R rechts = im Uhrzeigersinn


L links = entgegen dem Uhrzeigersinn

wechselnd = je nach Ansteuerung an A / B

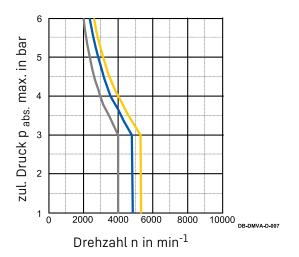
2.3 Zulässiger Druckbereich

2.3.1 Betriebsdruck

Betriebsdruck am Anschluss A / B	108 bis 215				
Detrieusuruck din Alischtuss A / D		offener Kreis	geschlossener Kreis		
Minimaldruck**	pHD _{min}	bar		3	
Nenndruck (dauerfest)	pHD _N	bar	400	450	
Höchstdruck (Einzelwirkdauer)	pHD _{max}	bar	450	500	
Einzelwirkdauer Höchstdruck pHD _{max}	t	S	<	1	
Gesamtwirkdauer Höchstdruck pHD _{max}	t	Bh*	300		
Druckänderungsgeschwindigkeit	RA	bar/s	170	000	

^{*)} Bh = Betriebsstunden

^{**)} Im Arbeitskreis muss am Anschluss A / B ein Minimaldruck anliegen, um eine ausreichende Schmierung im Triebwerk während des Betriebs zu gewährleisten.


GEFAHR

Versagen der Befestigungsschrauben am Arbeitsanschluss A / B!

Lebensgefahr.

Befestigungsschrauben Festigkeitsklasse 10.9 verwenden.

2.3.2 Gehäuse-, Lecköldruck

Kennli- nie	Nenn- größe	Wellendurchmesser (mm)
	108	45
	165	50
_	215	60

Lecköldruck am Anschluss T1 bis T5								
Nenngröße			108 bis 215					
Dauerhafter Lecköldruck absolut, offener und geschlossener Kreis	p _L	bar	3					
Maximaldruck absolut, offener und geschlossener Kreis bei reduzierter Drehzahl	pL _{max}	bar	6*					

^{*)} Kurzzeitige Druckspitzen von max. 10 bar abs. sind kurzzeitig (t < 0.1 s) erlaubt.

Hinweis

Der Druck in der Axialkolbeneinheit muss immer höher sein als der Außendruck auf den Wellendichtring.

2.4 Druckflüssigkeiten

2.4.1 Allgemein

Die Auswahl der geeigneten Druckflüssigkeit wird maßgeblich von der zu erwartenden Betriebstemperatur in Abhängigkeit von der Umgebungstemperatur, die äquivalent zur Tanktemperatur ist, beeinflusst.

ACHTUNG

Ein Mischen von unterschiedlichen Mineralöl-Druckflüssigkeiten ist untersagt!

Mindestanforderung an die Qualität

Spezifikation
LH-00-HYC3A
LH-00-HYE3A

Hinweis

Für zusätzliche Informationen siehe: www.liebherr.com (Broschüre: Schmierstoffe und Betriebsflüssigkeiten) Alternativ: An lubricants@liebherr.com wenden.

2.4.2 Füllmenge

Nenngröße	Füllmenge
108 bis 215	Werte auf Anfrage

Hinweis

Vor Inbetriebnahme muss die Axialkolbeneinheit mit Öl gefüllt und entlüftet werden. Dies muss während des Betriebs und nach längerer Stillstandszeit kontrolliert und gegebenenfalls wiederholt werden!

2.4.3 Filterung

- Um die vorgeschriebene Reinheitsklasse "21/17/14 nach ISO 4406" unter allen Umständen einhalten zu können, ist eine Filterung der Druckflüssigkeit nötig.
- Die Filterung der Druckflüssigkeit wird durch den gerätespezifischen Einsatz von Ölfiltern im Hydrauliksystem realisiert.
- Reinigungs- und Wartungsintervalle der Ölfilter, respektive des gesamten Ölkreislaufes sind vom Geräteeinsatz abhängig sind der gerätespezifischen Betriebsanleitung zu entnehmen.

2.5 Temperatur

Hinweis

Der optimale Einsatzbereich der Druckflüssigkeit von 16-36 mm²/s entspricht bei Liebherr Hydraulik HVI (ISO VG 46) von 32° bis 62°C.

Wird die Axialkolbeneinheit im optimalen Einsatzbereich der Druckflüssigkeit innerhalb der zulässigen Betriebsbedingungen und Einsatzgrenzen betrieben, ist sie verschleißarm sowie vor temperaturabhängiger Alterung geschützt. Ab einer Viskosität < 11 mm²/s (bei Liebherr Hydraulik HVI (ISO VG 46) = 80°C) ist pro 10°K Temperaturerhöhung von einer Halbierung der Lebensdauer der Druckflüssigkeit auszugehen.

Lässt sich der optimale Einsatzbereich nicht erfüllen, ist eine Druckflüssigkeit mit geeigneterem Viskositätsbereich auszuwählen oder das Hydrauliksystem ist vorzuwärmen beziehungsweise zu kühlen.

Um Temperaturschocks vorzubeugen, ist eine Temperaturdifferenz von < 25°C zwischen Druckflüssigkeit und Axialkolbeneinheit einzuhalten. Dies kann unter anderem durch eine stetige Durchströmung aller Axialkolbeneinheiten im Hydrauliksystem realisiert werden.

2.5.1 Einsatzgrenzen

Maximalwerte:

Maximale Lecköltemperatur: 115 °C.

ACHTUNG

Im Antriebswellenlagerbereich (RWDR und Lager) ist von der höchsten Temperatur auszugehen, die erfahrungsgemäß 10-15°K höher ist als die Lecköltemperatur.

Tiefe Temperaturen: (zusätzliche Informationen siehe: 2.5.2 Tieftemperaturen, Seite 10)

Hinweis

Die Einsatzgrenzen von Liebherr-Druckflüssigkeiten sind dem nachfolgend beigefügten Viskositätsdiagramm zu entnehmen, um eine sinnvolle Auswahl zu treffen. (zusätzliche Informationen siehe: 2.5.6 Viskositätsdiagramm, Seite 15)

2.5.2 Tieftemperaturen

ACHTUNG

Bei sinkenden Temperaturen unter den Gefrierpunkt kann es bei Nässe oder Reifbildung zum Anfrieren der Dichtlippe des Radialwellendichtringes kommen. Dies kann beim Start der Axialkolbeneinheit zum Abriss der Dichtlippe führen. Durch Vorwärmen/Auftauen des Radialwellendichtrings / der Welle muss dem Risiko vorgebeugt werden.

Hinweis

Bei Temperaturen, bei denen bereits die Gefahr der Verhärtung durch Einfrierung besteht, kann die Reibungswärme ausreichen, um die Dichtung elastisch zu erhalten oder nach dem Bewegungsbeginn rasch genug in einen funktionsfähigen Zustand zu bringen.

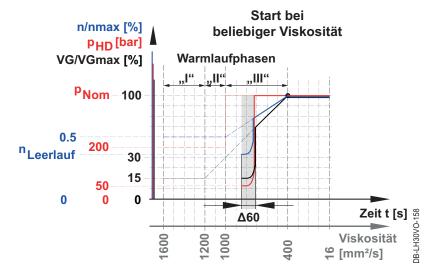
Übersicht

	Temperatur [°C]	Phase	Viskosität [mm²/s]	Hinweis
I	< -50°C	Ruhezustand	_*	Keine Lagerung / Kein Betrieb zulässig
	< -40°C	Ruhezustand	_**	Kein Betrieb zulässig, auf mindestens -40°C vorwärmen, entsprechende Druckflüssigkeit auswählen

*) Ruhezustand < -50° C

ACHTUNG

Temperaturen < -50° C im System = Kein Betrieb der Axialkolbeneinheit zulässig. Gefahr von Vorschädigungen der Dichtelemente der Axialkolbeneinheit. Temperaturen < -50° C vermeiden.


**) Ruhezustand < -40° C

ACHTUNG

Temperaturen < -40° C im System = Kein Betrieb der Axialkolbeneinheit zulässig. Funktion der Dichtelemente in der Axialkolbeneinheit sind bei Temperaturen < -40°C nicht gewährleistet. Axialkolbeneinheit und Tank auf mindestens -40° C vorwärmen und Druckflüssigkeit Liebherr Hydraulic Plus Arctic/Liebherr Hydraulic FFE 30 mit einer Viskosität < 1600 mm²/s verwenden. (zusätzliche Informationen siehe: 2.5.6 Viskositätsdiagramm, Seite 15)

Unbhängig von der Viskosität < 1600 mm²/s ist die Axialkolbeneinheit vor dem Einstieg in den Kaltstart inklusive den Warmlaufphasen oder beim Warmstart mindestens 60 s unter folgenden Bedingungen zu betreiben:

- Betriebsdruckbereich: p_{HD min} ≤ p_{HD} ≤ 50 bar
- Drehzahl: $n_{min} \le n \le 1000 \text{ min}^{-1}$, beziehungsweise Leerlaufdrehzahl Antriebsmotor*
- Verdrängungsvolumen: $V_{g min} \le V_{g} \le 15 \%$ von $V_{g max}$
- · Keine Bewegungen der Ausrüstung durchführen.
- *) Bei dem Einsatz eines Antriebes mit höheren Drehzahlen als in den Bedingungen gefordert (zum Beispiel ein Elektromotor) bitte Rücksprache mit Liebherr, unter Angabe der möglichen Drehzahl(en).

Nach Ablauf der 60 s ist die Viskosität mit den vorhandenen Temperaturwerten und dem Viskositätsdiagramm zu ermitteln, entsprechende Warmlaufphase zu wählen und die Axialkolbeneinheit im definierten Zeitrahmen und entsprechenden Bedingungen zu betreiben, siehe Warmlaufphasen.

Übersicht

Temperatur [°C]	Phase	Viskosität [mm²/s]	Hinweis
> -40°C	Kaltstart	1600-400	Die aktuelle Viskosität der Druckflüssigkeit vor dem Start ist ausschlaggebend. Im Bereich von 1600-400 [mm²/s] handelt es sich um einen Kaltstart. Entsprechend der Viskosität ist der Einstieg in die Warmlaufphase zu wählen und die weiteren Warmlaufphasen sind entsprechend der Zeitvorgaben und Betriebsbedingungen zu durchlau-
	Warmlaufphase "I"	1600-1200	fen. Bedingungen und Maßnahmen einhalten, siehe Kapitel Warmlaufphase "I"
zuoätzliche Informatie	Warmlaufphase "II"	1200-1000	Bedingungen und Maßnahmen einhalten, siehe Kapitel Warmlaufphase "II"
zusätzliche Informatio- nen siehe: 2.5.6 Viskosi- tätsdiagramm, Seite 15	Warmlaufphase "III"	1000-400	Bedingungen und Maßnahmen einhalten, siehe Kapitel Warmlaufphase "III"
tatsalagramm, selte 15	Normalbetrieb	400-16*	Axialkolbeneinheit voll belastbar, siehe Kapitel Normalbetrieb
	optimaler Einsatzbereich	36-16	Axialkolbeneinheit voll belastbar, siehe Kapitel Normalbetrieb

^{*)} Bei maximaler Lecköltemperatur darf die Viskosität 8 mm²/s (kurzzeitig d.h. < 3 min., 7mm²/s) nicht unterschreiten.

2.5.3 Kaltstart mit anschließenden Warmlaufphasen

ACHTUNG

Vor dem Kaltstart ist die vorliegende Viskosität* anhand der Öltemperatur (zum Beispiel Tanktemperatur) zu bestimmen, um Schäden an den Axialkolbeneinheiten durch eine zu hohe Viskosität* der Hydraulikflüssigkeit zu vermeiden. Bei einer Viskosität* > 1600 mm²/s ist das Hydrauliksystem vorzuwärmen.


Mithilfe der ermittelten Viskosität* ist die Art und Dauer des Warmlaufs anhand des Kaltstartdiagramms** einzuhalten.

*) (zusätzliche Informationen siehe: 2.5.6 Viskositätsdiagramm, Seite 15)

Es gelten folgende Bedingungen:

- Viskosität: 1600-1200 mm²/s = Axialkolbeneinheit 600-360 s mit in Warmlaufphase "I" genannten Maßnahmen betreiben.
- Viskosität: 1200-1000 mm²/s = Axialkolbeneinheit 360-120 s mit in Warmlaufphase "II" genannten Maßnahmen betreiben.
- Viskosität: 1000-400 mm²/s = Axialkolbeneinheit 120-60 s mit in Warmlaufphase "III" unten genannten Maßnahmen betreiben.
- Viskosität: 400-16 mm²/s = Axialkolbeneinheit 60 s mit in "Warmstart" genannten Maßnahmen betreiben. Das heißt auch bei ≤ 400 mm²/s sind die Maßnahmen mindestens 60 s einzuhalten.

**) Kaltstartdiagramm

2.5.4 Warmlaufphasen

Hinweis

Entsprechend der aktuellen Viskosität ist nach dem Kaltstart mit der entsprechenden Warmlaufphase fortzufahren. In den darauffolgenden Warmlaufphasen dürfen die Betriebsparameter erhöht werden, um ein zügiges Aufwärmen des Hydrauliksystems zu ermöglichen.

Warmlaufphase " I "

Bedingung:

• Viskosität: 1600-1200 mm²/s = Axialkolbeneinheit mit unten genannten Maßnahmen betreiben bis eine Viskosität von 1200 mm²/s erreicht ist.

Maßnahmen:

- Betriebsdruckbereich: p_{HD min} ≤ p_{HD Warmlauf "I"} ≤ 200 bar
- Drehzahl: n_{min} ≤ n_{Warmlauf "I"} ≤ 50 % von n_{max}
- Verdrängungsvolumen: $V_{g min} \le V_{g Warmlauf, l''} \le 15 \% von V_{g max}$

DB-LH30VO-157

Warmlaufphase "II"

Bedingung:

 Viskosität: 1200-1000 mm²/s = Axialkolbeneinheit mit unten genannten Maßnahmen betreiben bis eine Viskosität von 1000 mm²/s erreicht ist.

Maßnahmen:

- Betriebsdruckbereich: p_{HD min} ≤ p_{HD Warmlauf "II"} ≤ 200 bar
- Drehzahl: $n_{min} \le n_{Warmlauf , II''} \le 50 \% \text{ von } n_{max}$
- Verdrängungsvolumen: V_{g min} ≤ V_{g Warmlauf "II"} ≤ 15 -30 % von V_{g max}

Warmlaufphase "III"

Bedingung:

 Viskosität: 1000-400 mm²/s = Axialkolbeneinheit mit unten genannten Maßnahmen betreiben bis eine Viskosität von 400 mm²/s erreicht ist.

Maßnahmen:

- Betriebsdruckbereich: p_{HD min} ≤ p_{HD Warmlauf "III"} ≤ p_{HD max}
- Drehzahl: n_{min} ≤ n_{Warmlauf "III"} ≤ 50 % von n_{max}
- Verdrängungsvolumen: $V_{g min} \le V_{g Warmlauf, III''} \le 30 -100 \% von V_{g max}$

Warmstart

Bedingung:

Viskosität: 400-16 mm²/s = Axialkolbeneinheit auch bei Viskosität < 400 mm²/s mit unten genannten Maßnahmen mindestens 60 s betreiben.

Maßnahmen:

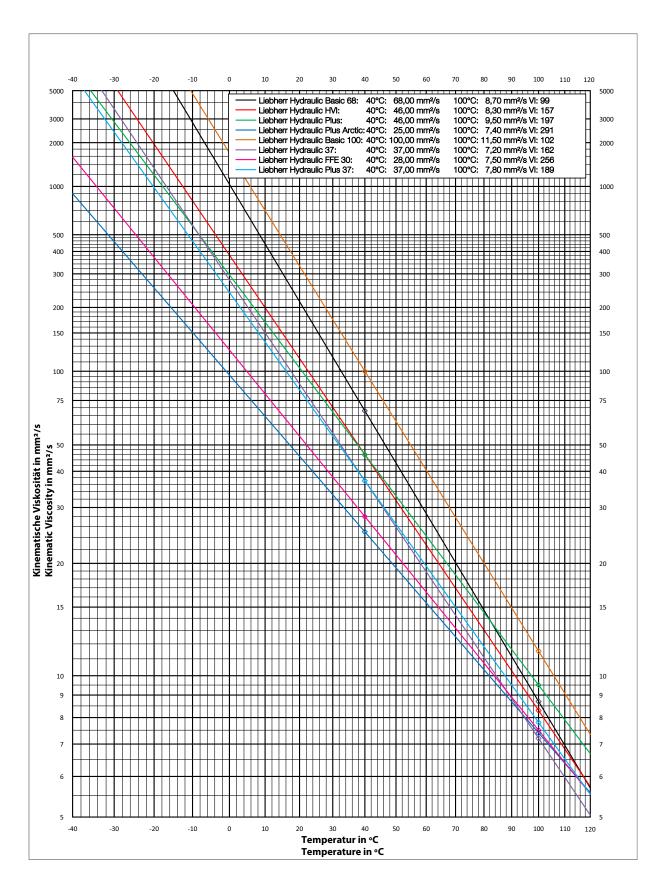
- Betriebsdruckbereich: p_{HD min} ≤ p_{HD} ≤ 50 bar
- Drehzahl: n_{min} ≤ n ≤ 1000 min⁻¹, beziehungsweise Leerlaufdrehzahl Antriebsmotor
- Verdrängungsvolumen: $V_{g \text{ min}} \le V_{g} \le 15 \% \text{ von } V_{g \text{ max}}$

2.5.5 Normalbetrieb

Hinweis

Optimaler Einsatzbereich: 16-36 mm²/s

Bei maximaler Lecköltemperatur darf die Viskosität 8 mm²/s (kurzzeitig d.h. < 3 min., 7mm²/s) nicht unterschreiten.


Hinweis

Im Viskositätsbereich von 400-8 mm²/s ist die Axialkolbeneinheit voll belastbar.

- Betriebsdruckbereich: p_{HD min} ≤ p_{HD} ≤ p_{HD max}
- Drehzahl: n_{min} ≤ n ≤ n_{max}
- Verdrängungsvolumen: V_{G min} ≤ V_G ≤ V_{g max}

2.5.6 Viskositätsdiagramm

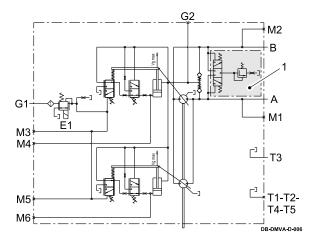
2.6 Wellendichtring

2.6.1 Allgemein

Die Radialwellendichtringe (RWDR) sind spezielle Dichtelemente, die einen bestimmten Gehäusedruck zulassen. Um zu gewährleisten, dass das tribologische System optimal funktioniert, müssen die Betriebsbedingungen eingehalten werden.

Dichtkantentemperatur variiert auf Grund von folgenden Faktoren im Gehäuse:

- Umfangsgeschwindigkeit
- Druckflüssigkeitstemperatur
- Schmiermedium
- Druckaufbau


Die Dichtkantentemperatur kann um 20 °C bis 40 °C über der Lecköltemperatur einer hydraulischen Axialkolbeneinheit liegen.

2.7 Gehäusespülung

Unter verschiedenen Betriebszuständen, z.B. einen sehr geringen Schluckstrom über einen längeren Zeitraum, kann es zu einem grenzwertigen Temperaturanstieg im Gehäuse kommen.

Abhängig vom hydraulischen Aufbau kann ein Spülkreis 1 zur Kühlung und Filtrierung erforderlich sein, in dem das "heiße" Hydrauliköl zu einem externen Kühler geleitet, dort abkühlt und wieder in das Hydrauliksystem eingespeist wird.

Die Spülmenge Q_V in I/min ist für jede Nenngröße in Verbindung mit der Anwendung individuell einzustellen und obliegt dem Verantwortungsbereich des Geräte- oder Anlagenherstellers.

3.1 Regelungsarten

DMVA			/			1	W		1	Α	0			
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.

Hinweis

Pro Regelungsart- oder funktion ist jeweils nur eine Nenngröße bebildert, vorwiegend auf Basis der Nenngröße 165. Spezielle Applikationen und Sonderanfertigungen sind in diesem Kapitel nicht aufgeführt. Verwenden Sie immer die Informationen aus der mitgelieferten Einbauzeichnung oder halten Sie Rücksprache mit Liebherr.

Für alle Regelungsarten gilt:

GEFAHR

Die federgeführte Rückstellung im Regelventil ist keine Sicherheitsvorrichtung!

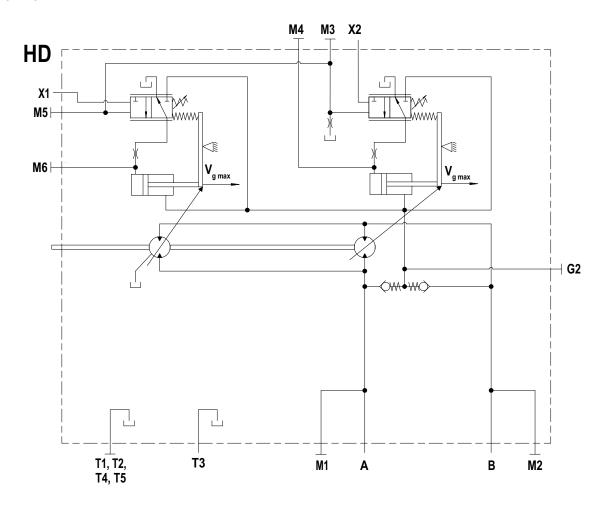
Verunreinigungen im Hydrauliksystem wie z.B. Abrieb oder Restschmutz aus Geräte- oder Anlagenbauteilen können zu Blockierungen in nicht definierten Stellungen diverser Reglerbauteile führen. Vorgaben des Maschinenführers können unter Umständen nicht mehr realisiert werden. Die Realisierung einer Sicherheitsvorrichtung für z.B. eines Not-Aus, liegt im Verantwortungsbereich des Geräte- oder Anlagenherstellers.

Folgende, im Baukastenprinzip ausgeführte Ansteuerungs- und Regelungsarten können für die DMVA-Baureihe bestellt werden:

3.1.1 Mechanisch-hydraulische Regler

- HD- Regelung, siehe Kapitel 3.2.1
- SD-DA- Regelung, siehe Kapitel 3.2.1

3.1.2 Elektro-hydraulische Regler

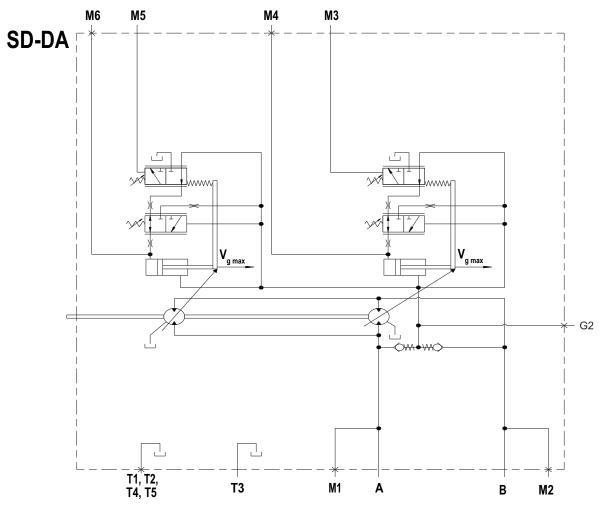

- EL- Regelung, siehe Kapitel 3.2.2
- EL1- Regelung, siehe Kapitel 3.2.2
- EL-DA- Regelung, siehe Kapitel 3.2.2
- EL-DA1- Regelung, siehe Kapitel 3.2.2

Weitere Regelungsarten, auf Anfrage.

3.2 Standard- Hydraulikschemen

3.2.1 Mechanisch-hydraulische Regler

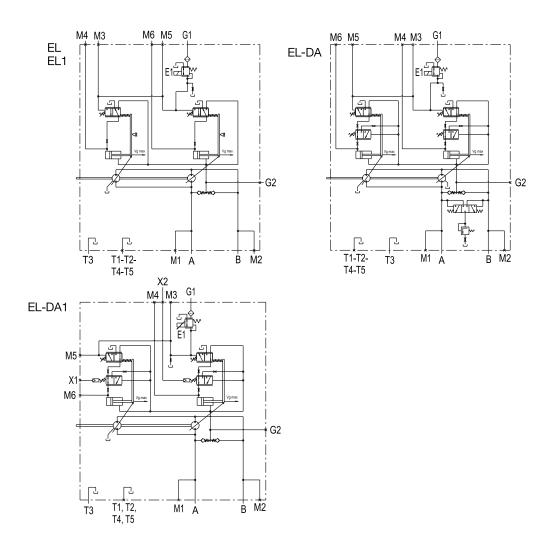
HD-Reglung


A, B	Arbeitsanschlüsse SAE J 518	M3, M5	Steuerdruckanschluss ISO 9974-1
G2	Hilfsdruck ISO 9974-1	M4, M6	Messanschluss Stelldruck ISO 9974-1
M1, M2	Messanschlüsse Hochdruck ISO 9974-1	T1, T2, T3 T4, T5	Leckölanschluss ISO 9974-1

Hinweis

Öleintritt im Anschluss A: Drehrichtung = Rechts Öleintritt im Anschluss B: Drehrichtung = Links

SD-DA-Reglung


A, B	Arbeitsanschlüsse SAE J 518	M3, M5	Steuerdruckanschluss ISO 9974-1
G2	Hilfsdruck ISO 9974-1	M4, M6	Messanschluss Stelldruck ISO 9974-1
M1, M2	Messanschlüsse Hochdruck ISO 9974-1	T1, T2, T3 T4, T5	Leckölanschluss ISO 9974-1

Hinweis

Öleintritt im Anschluss A: Drehrichtung = Rechts Öleintritt im Anschluss B: Drehrichtung = Links

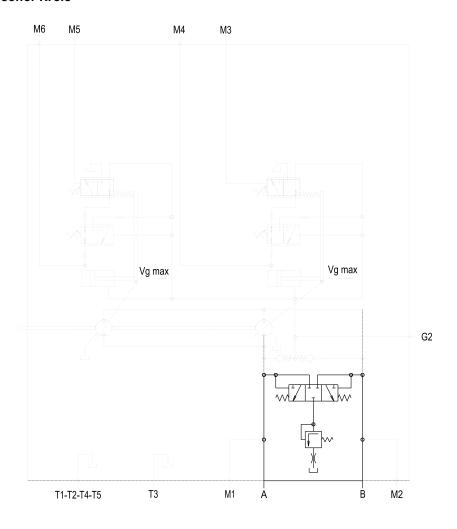
3.2.2 Elektro-hydraulische Regler

DB-DMVA-D-009

A, B	Arbeitsanschlüsse SAE J 518	M3, M5	Messanschluss Steuerdruck ISO 9974-1
El	DRE Steckanschluss AMP Junior Timer,2P	M4, M6	Messanschluss Stelldruck ISO 9974-1
G1	Stelldruckversorgung ISO 9974-1	T1, T2, T3 T4, T5	Leckölanschluss ISO 9974-1
G2	Hilfsdruckanschluss ISO 9974-1	X1, X2	DA1-Übersteuerungssignal ISO 9974-1
M1, M2	Messanschlüsse Hochdruck ISO 9974-1	-	-

Hinweis

Öleintritt im Anschluss A: Drehrichtung = Rechts Öleintritt im Anschluss B: Drehrichtung = Links


3.2.3 Regelungen mit Spülung

Hinweis Für Spülung gilt:

geschlossener Kreis = Spülung obligatorisch

Geschlossener Kreis

A, B	Arbeitsanschlüsse SAE J 518	M3, M5	Steuerdruckanschluss ISO 9974-1
G2	Hilfsdruck ISO 9974-1	M4, M6	Messanschluss Stelldruck ISO 9974-1
M1, M2	Messanschlüsse Hochdruck ISO 9974-1	T1, T2, T3 T4, T5	Leckölanschluss ISO 9974-1

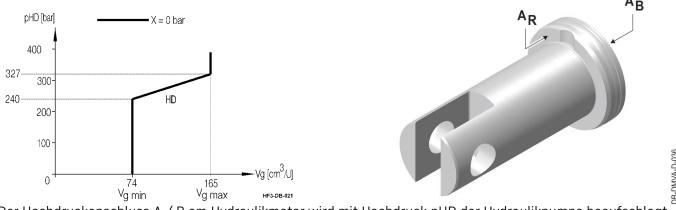
Hinweis

Öleintritt im Anschluss A: Drehrichtung = Rechts Öleintritt im Anschluss B: Drehrichtung = Links DB-DMVA-D-010

3.3 Regelungsfunktionen

- HD- Funktion / Hochdruck-abhängige hydraulische Verstellung, siehe Kapitel 3.3.1
- HD- Übersteuerung, siehe Kapitel 3.3.2
- SD- Funktion / Steuerdruck-proportionale hydraulische Verstellung, siehe Kapitel 3.3.3
- DA- Funktion / Druckregelung, siehe Kapitel 3.3.4
- DAI- Funktion / Druckregelung mit Übersteuerung, siehe Kapitel 3.3.5
- EL- Funktion / Elektro-proportionale Verstellung, siehe Kapitel 3.3.6
- EL1- Funktion / Elektro-proportionale Verstellung, siehe Kapitel 3.3.7

(i)


Hinweis Für alle Regelungsfunktionen gilt:

V_{g min} = kleines Drehmoment "M" = hohe Drehzahl "n" V_{g max} = großes Drehmoment "M" = niedrige Drehzahl "n"

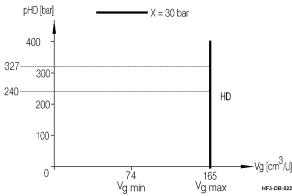
3.3.1 HD- Funktion

In der HD- Regelung ist das Schluckvolumen V_g im Regelbereich proportional abhängig vom am Hochdruckanschluss A / B anliegenden Betriebsdruck pHD (von der Hydraulikpumpe bereitgestellt).

Kennlinienverlauf

Der Hochdruckanschluss A / B am Hydraulikmotor wird mit Hochdruck pHD der Hydraulikpumpe beaufschlagt.

Bis zu einem, an der $V_{g min}$ - Einstellschraube, fest eingestellten Wert des Regelbeginns z.B. 74 cm³, liegen an der Stellkolbenbodenfläche A_B pReg = 0 bar und an der Stellkolbenringfläche A_R Hochdruck pHD an. Die Axialkolbeneinheit ist auf $V_{g min}$ geschwenkt.

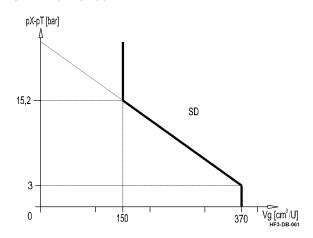

Übersteigt pHD am Hochdruckanschluss A / B den Wert des Regelbeginns z.B. 240 bar, beaufschlagt das Regelventil die Stellkolbenbodenfläche A_B mit pReg (ca. 1/2pHD). Ist pReg x A_B größer als pHD x A_R verschiebt sich der Stellkolben und schwenkt die Axialkolbeneinheit Richtung $V_{g\ max}$ und pegelt sich in Abhängigkeit der Last ein.

Bei einer Beaufschlagung mit 0 bar am Anschluss X wird die Kennlinie der HD-Funktion gefahren.

Wahlweise kann die HD-Funktion übersteuert werden.

3.3.2 HD- Übersteuerung

Kennlinienverlauf

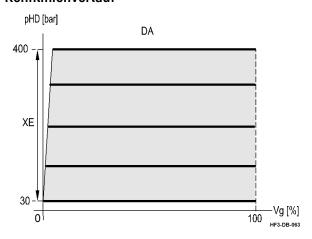


Bei der Ubersteuerungsfunktion wird Anschluss X mit 30 bar beaufschlagt. Die Axialkolbeneinheit schwenkt auf $V_{g\,max}$, unabhängig vom Hochdruck pHD am Anschluss A / B. Der Hydraulikmotor reagiert somit feinfühliger mit maximalem Drehmoment.

3.3.3 SD- Funktion (negative Kennlinie)

Die SD- Regelung ist für Anwendungen die einen proportional geregelten Schluckstrom benötigen, geeignet.

Kennlinienverlauf



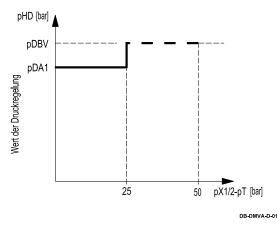
Bei einer Verstellung des Triebwerks von $V_{g\,max}$ Richtung $V_{g\,min}$ schwenkt die Axialkolbeneinheit mit steigendem SD- Steuerdruck an M3/M5 auf vermindertes Schluckvolumen V_{g} .

Bei einem nachlassenden, fehlenden oder fehlerhaften Ansteuerungssignal an M3/M5 schwenkt die Axialkolbeneinheit Richtung $V_{g\ max}$.

3.3.4 DA- Funktion

Kennlinienverlauf

Die DA-Funktion sorgt für eine Regelung des Schluckstroms der Axialkolbeneinheit. Der Betriebsdruck wird bei dem Erreichen des eingestellten Wertes konstant gehalten, unabhängig von Drehmoment an der Triebwelle des Anbaumotors:


- Steigt das Abtriebsmoment, schwenkt die Axialkolbeneinheit Richtung $V_{g\,max}$ um den Betriebsdruck konstant zu halten.
- Sinkt das Abtriebsmoment, schwenkt die Axialkolbeneinheit Richtung V_{g min} um den Betriebsdruck konstant zu halten.

Optionen

- Weiterführende interne Konstruktionsmaßnahmen zur Schwingungsdämpfung nach Absprache.
- DA-Übersteuerung (DA1)

3.3.5 DA1- Funktion

Kennlinienverlauf

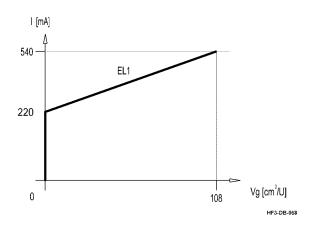
Die DA1-Funktion sorgt z.B. bei Bohrkopfantrieben durch Ansteuerung mit einem Übersteuerdruck (p_{min} = 25 bar, p_{max} = 50 bar) an X1/X2 für eine Deaktivierung der DA-Funktion. Der Druckanstieg wird bis zur Aktivierung des Druckbegrenzungsventils (pDBV) nicht begrenzt.

Bis zu einem Übersteuerdruck (p < 25 bar) an X1/X2 bleibt die DA-Funktion aktiv.

3.3.6 EL- Funktion (negative Kennlinie)

Die EL- Regelung ist für Anwendungen die einen proportional geregelten Schluckstrom benötigen, geeignet.

Kennlinienverlauf

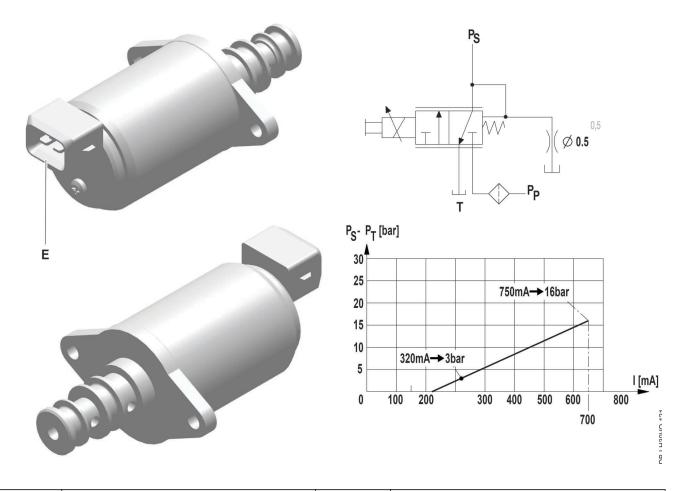

Bei einer Verstellung des Triebwerks von $V_{g max}$ Richtung $V_{g min}$ schwenkt die Axialkolbeneinheit mit steigendem Ansteuerungssignal an E1 auf vermindertes Schluckvolumen V_{g} .

Bei einem nachlassenden, fehlenden oder fehlerhaften Ansteuerungssignal an El schwenkt die Axialkolbeneinheit Richtung $V_{q\ max}$.

3.3.7 EL1- Funktion (positive Kennlinie)

Die EL- Regelung ist für Anwendungen die einen proportional geregelten Schluckstrom benötigen, geeignet.

Kennlinienverlauf

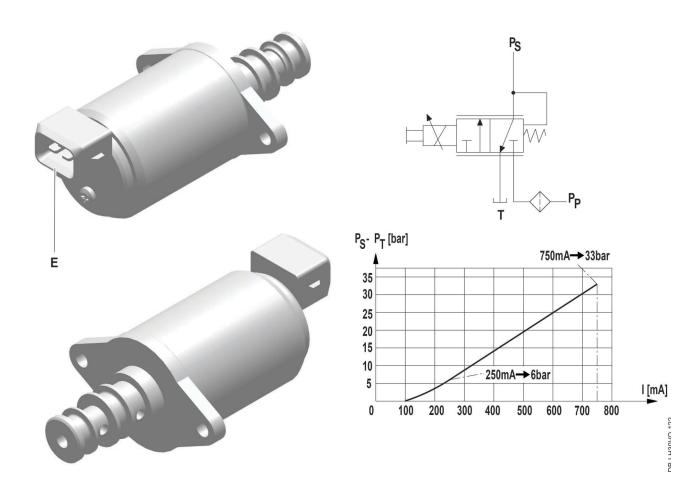


Bei einer Verstellung des Triebwerks von $V_{g\,min}$ Richtung $V_{g\,max}$ schwenkt die Axialkolbeneinheit mit steigendem Ansteuerungssignal an E1 auf größeres Schluckvolumen V_{g} .

Bei einem nachlassenden, fehlenden oder fehlerhaften Ansteuerungssignal an El schwenkt die Axialkolbeneinheit Richtung $V_{g\ min}$.

3.4 Elektrische Komponenten

3.4.1 Druckreduzierventil (DRE) Variante 1



T	Tank	PS	Ausgang DRE
PP	Eingang DRE	Е	Anschluss AMP Junior Timer

Allgemeine Informationen

Technische Daten Druckreduzierventil			
Nennspannung U	24 V		
Strom I _{max.}	750 mA		
Versorgungsdruck p _{max.}	50 bar		
Magnetkennlinie: flach um die Regelposition	-		
Steckanschluss AMP JUNIOR TIMER 2-Polig	-		

3.4.2 Druckreduzierventil (DRE) Variante 2

Т	Tank	PS	Ausgang DRE
PP	Eingang DRE	Е	Anschluss AMP Junior Timer

Allgemeine Informationen

Technische Daten Druckreduzierventil		
Nennspannung U	24 V	
Strom I _{max.}	750 mA	
Versorgungsdruck p _{max.}	350 bar	
Magnetkennlinie: flach um die Regelposition	-	
Steckanschluss AMP Junior Timer	-	

3.4.3 Sensorik

DMVA			/			1	W		1	Α	0			
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.

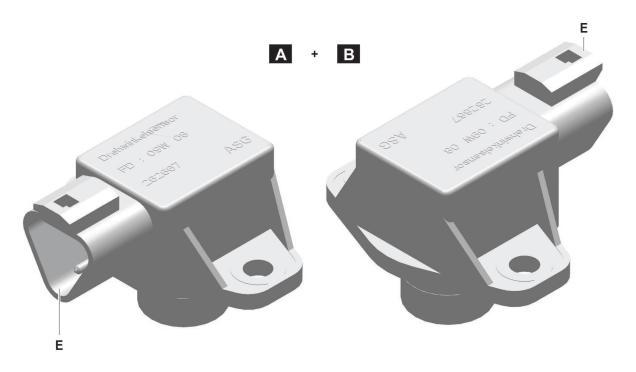
0 ohne Sensor

D* mit Drehzahlsensor

W* mit Drehwinkelsensor

Drehzahlsensor

Technische Daten 8-32V Nennspannung U Kurzschlussfestigkeit Ja Stromverbrauch <20mA bei 24V Verpolungsschutz Ja bis maximal 32V Schutzart ISO 20635 Kabelbaumlänge IP6K9K 887 mm Sensorseite Steckerseite (verbunden) IP67 maximaler Druck auf aktive Frequenzbereich - 0 bis 20kHz 10bar Fläche Steckanschluss E Deutsch DT04-4P Luftspalt minimal/maximal 0.3/2.0mm Stromstärke_{max.} 40mA



Hinweis

Der Drehzahlsensor ist nicht nachrüstbar und muss bei der Neukonfiguration des DMVA mitberücksichtigt werden.

^{*} kombinierbar, Trennung durch Bindestrich z.B.: D-W

Drehwinkelsensor

	Technisc	he Daten		
Variante A		Variante B		
Nennspannung U	5 V	Nennspannung U	8-30 V	
Messbereich	-27° bis + 27°	Messbereich	-27° bis + 27°	
Ausgangssignal -27° 0° + 27°	0.5 VDC 2.5 VDC 4.5 VDC	Ausgangssignal -27° 0° + 27°	4mA 12mA 20mA	
Arbeitstemperatur	-40°C bis +125°C	Arbeitstemperatur	-40°C bis +85°C	
E- Steckanschluss Deutsch DT04-3P				

Hinweis

Der Winkelsensor ist nicht nachrüstbar und muss bei der Projektierung des DMVA mitberücksichtigt werden. Abmessungen Variante A und B identisch, gewünschte Variante bei Bestellung angeben.

4.1 Generelle Informationen zur Projektierung

Die im Gerät oder der Anlage vorgesehene Einbauvariante muss in Kombination mit der Einbaulage bei der Konzeptionierung der Axialkolbeneinheit mit Liebherr abgestimmt und von Liebherr freigegeben werden.

ACHTUNG

Beschädigung des Hydraulikprodukts.

Mangelschmierung am Hydraulikprodukt!

Sicherstellen, dass folgende Voraussetzungen gegeben sind:

- Freigegebene Einbaulagen des Hydraulikprodukts respektieren.
- Für andere Einbaulagen an den Liebherr-Kundendienst wenden.
- Gehäuse ist bei Inbetriebnahme und während des Betriebs vollständig mit Druckflüssigkeit befüllt.
- Gehäuse ist nach Inbetriebnahme und während des Betriebs entlüftet.

Liebherr unterscheidet bei den Axialkolbeneinheiten zwei Einbauvarianten:

A: Untertankeinbau (Axialkolbeneinheit ist **unter** dem minimalen Flüssigkeitsniveau des Tanks verbaut) B: Übertankeinbau (Axialkolbeneinheit ist **über** dem minimalen Flüssigkeitsniveau des Tanks verbaut)

Liebherr unterscheidet bei den Axialkolbeneinheiten zwei Einbaulagen:

1/3/5/7/9/11: Triebwelle waagerecht 2/4/6/8/10/12: Triebwelle senkrecht

Hinweis

Liebherr empfiehlt:

Einbauvariante: Untertankeinbau A

Einbaulage: 1/3/5/7/9/11 Triebwelle waagerecht mit "Regelung oben"

*)Bei den Einbaulagen 2/4/6/8 Triebwelle senkrecht und 1/3/5/7 Triebwelle waagerecht mit "Regelung unten" ist ein vollständiges Befüllen und Entlüften kritisch. Die Axialkolbeneinheit muss dann vor der finalen Positionierung in Einbaulage 1/3/5/7/9 "Regelung oben" angeschlossen, befüllt und entlüftet werden. Im Anschluss kann sie in die finale Einbaulage 2/4/6/8 Triebwelle senkrecht oder 1/3/5/7 Triebwelle waagerecht mit "Regelung unten" gedreht werden.

Bei einigen Axialkolbeneinheiten ist für die Einbaulagen 2/4/6/8 Triebwelle senkrecht und 1/3/5/7 Triebwelle waagerecht mit Regelung unten ein zusätzlicher Leckölanschluss T4 vorgesehen: Leckölanschluss T4 als Sonderausführung bestellen. (zusätzliche Informationen siehe: 1 Typenschlüssel, Seite 3)

4.1.1 Leckölleitungen

Um eine Entleerung der Axialkolbeneinheit bei längeren Stillstandszeiten zu verhindern, ist die Leckölleitung in einem Bogen so zu verlegen, dass sie mit dem Mindestmaß Ü1 = 30 mm über dem höchstmöglichen Niveau der Axialkolbeneinheit führt. Dies gilt insbesondere für Einbauvariante B: Übertankeinbau.

Leckölleitung je nach Einbaulage am obersten Leckölanschluss T1, T2, T3....Tx anschließen.

Die Leckölleitung muss mit einem Minimalabstand von 115 mm zum Tankboden in den Tank münden, um eine Aufwirbelung von Schmutzpartikeln im Tank zu verhindern.

Die Leckölleitung muss mit einem Minimalabstand von 250 mm unterhalb des minimalen Flüssigkeitsniveaus in den Tank münden, um eine Schaumbildung im Tank zu verhindern.

Bei Tieftemperaturen mit hohen Viskositäten ist für Axialkolbeneinheiten mit mehreren Triebwerken und mit einer gemeinsamen Leckölleitung unbedingt auf den maximalen Gehäusedruck zu achten. (zusätzliche Informationen siehe: 2.3.2 Gehäuse-, Lecköldruck, Seite 8) Ist der maximale Gehäusedruck außerhalb der Toleranz ist für jedes Triebwerk eine eigene Leckölleitung anzuschließen.

4.1.2 Druckflüssigkeitstank

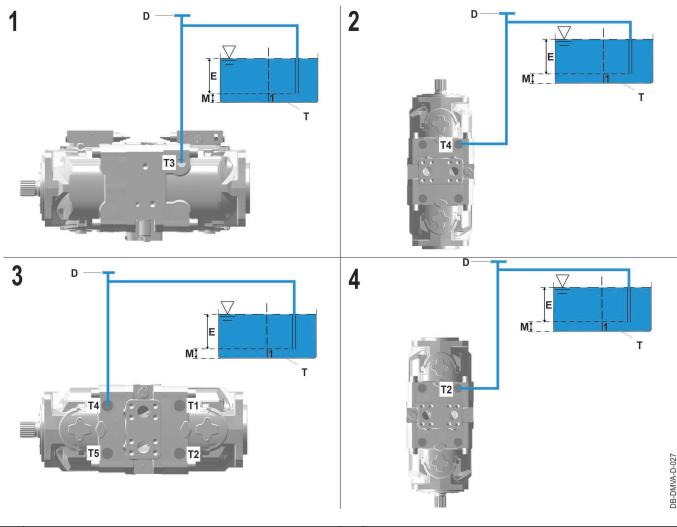
Den Druckflüssigkeitstank so konzipieren, dass das Hydrauliköl bei der Zirkulation ausreichend abkühlt und sich betriebsbedingte Verunreinigungen am Tankboden absetzen.

Sicherstellen, dass die Leitungen gemäß Empfehlungen angeschlossen sind und in den Druckflüssigkeitstank münden. (zusätzliche Informationen siehe: 4.1.1 Leckölleitungen, Seite 30)

4.2 Einbauvarianten

Hinweis

Bei der Verwendung des DMVA im "geschlossenen Kreislauf" ist die Einbauvariante auf Grund des fehlenden Tanks irrelevant.


4.2.1 Einbauvariante Untertankeinbau

Hinweis

Liebherr empfiehlt: Untertankeinbau A, dadurch:

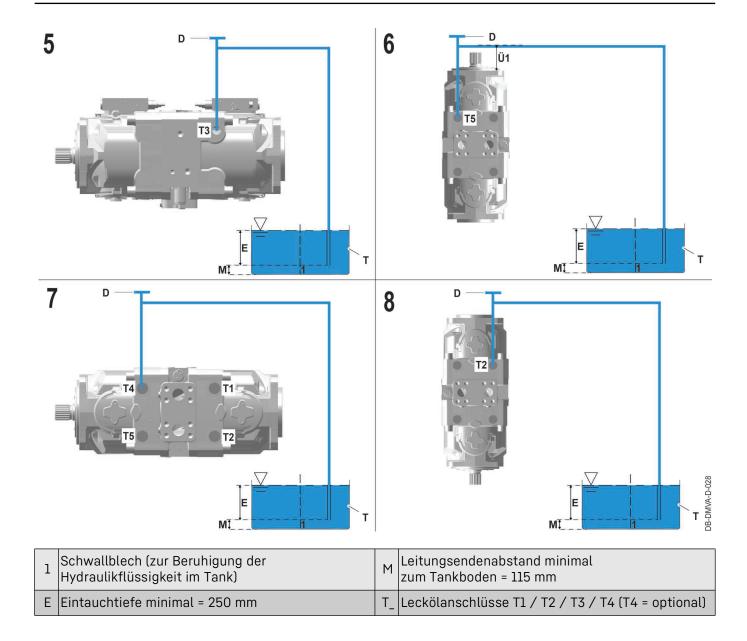
- Gehäuse kann sich nicht zum Tank entleeren.

1	Schwallblech (zur Beruhigung der Hydraulikflüssigkeit im Tank)	М	Leitungsendenabstand minimal zum Tankboden = 115 mm
D	Befüll- und Entlüftungsanschluss (extern, nicht im Lieferumfang enthalten)	T_	Leckölanschlüsse T1 / T2 / T3 / T4 (T4 = optional)
Ε	Eintauchtiefe minimal = 250 mm	Т	Tank

4.2.2 Einbauvariante Übertankeinbau

ACHTUNG

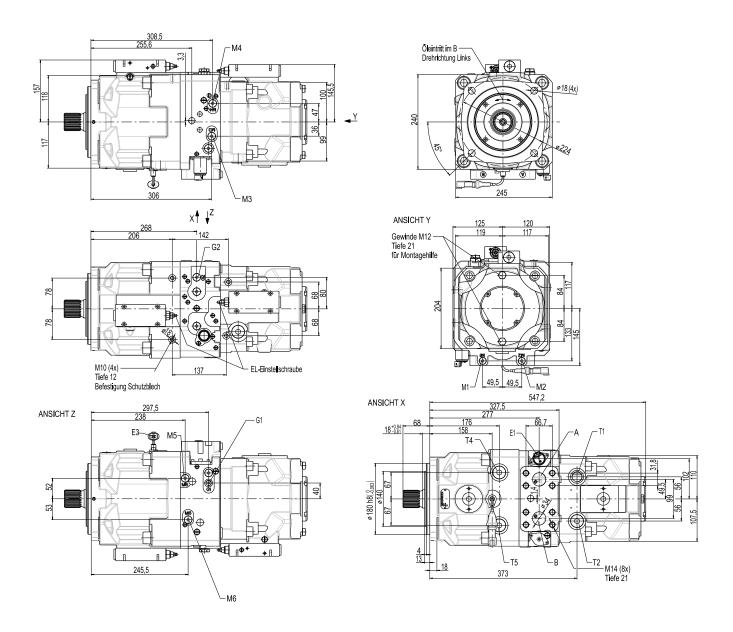
Beschädigung des Hydraulikprodukts.


"Heißlaufen" durch Luftpolster im Lagerbereich oder am Radialwellendichtring bei Übertankeinbau (Einbauvariante B)! Sicherstellen, dass folgende Voraussetzungen gegeben sind:

- Gehäuse ist bei Inbetriebnahme und während des Betriebs vollständig mit Druckflüssigkeit befüllt.
- Gehäuse ist nach Inbetriebnahme und während des Betriebs entlüftet.

Hinweis

Um bei längerer Außerbetriebnahme eine Entleerung der Axialkolbeneinheit zu verhindern, ist die Leckölleitung in einem Bogen so zu verlegen, dass sie mit dem Mindestmaß Ü1 = 30 mm über dem höchstmöglichen Niveau der Axialkolbeneinheit führt.


	Befüll- und Entlüftungsanschluss (extern, nicht im Lieferumfang enthalten)	Т	Tank
Ü1	Höhe Leckölleitung minimal = 30 mm	-	-

5 Abmessungen

5.1 NG 165-108

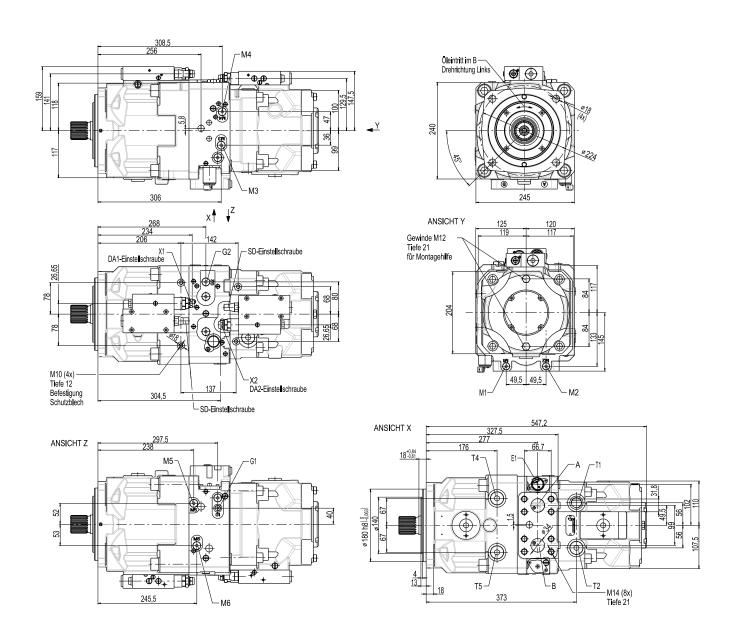
5.1.1 NG 165-108, Regelungsart EL1

Stelle des Schwerpunktes

E1	DRE / AMP Junior Timer 2-polig, PWM= 100Hz, Un= 24V, I _{max.} = 750 mA
A/B	Arbeitsanschluss SAE J518-1 1/4", 6000 psi

T1 / T2 T4 / T5	Leckölanschluss ISO 9974-1, M26x1.5
M4 / M6	Messan. Stelldruck ISO 9974-1, M14x1.5

DB-DMVA-D-014


5 Abmessungen

M1 / M2	Messan. Hochdruck ISO 9974-1, M12x1.5
M3 / M5	Messan. Steuerdruck ISO 9974-1, M14x1.5

G1	Stelldruckversorgung ISO 9974-1, M14x1.5
G2	Hilfsdruck ISO 9974-1, M14x1.5

5.1.2 NG 165-108, Regelungsart EL-DA1

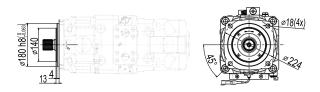
Stelle des Schwerpunktes

A/B	Arbeitsanschluss SAE J518-1 1/4", 6000 psi		
M1 / M2	Messan. Hochdruck ISO 9974-1, M12x1.5		

	DB-DMV74-0-010
G1	Stelldruckversorgung ISO 9974-1, M14x1.5
G2	Hilfsdruck ISO 9974-1, M14x1.5

Datum: 02/2023 Version: 1.2 ID-Nr.: 11372600

DR-DMVA-D-015

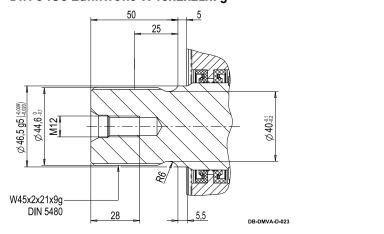

M3 / M5	Messan. Steuerdruck ISO 9974-1, M14x1.5
M4 / M6	Messan. Stelldruck ISO 9974-1, M14x1.5
El	DRE / AMP Junior Timer 2-polig, PWM= 100Hz, Un= 24V, I _{max.} = 750 mA

X1 / X2	DA1-Übersteuerung ISO 9974-1, M12x1.5
-	-
T1 / T2 T4 / T5	Leckölanschluss ISO 9974-1, M26x1.5

5.2 NG 165-108, Anbauflansch

	DMVA			/			1	W		1	Α	0			
Ī	1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.

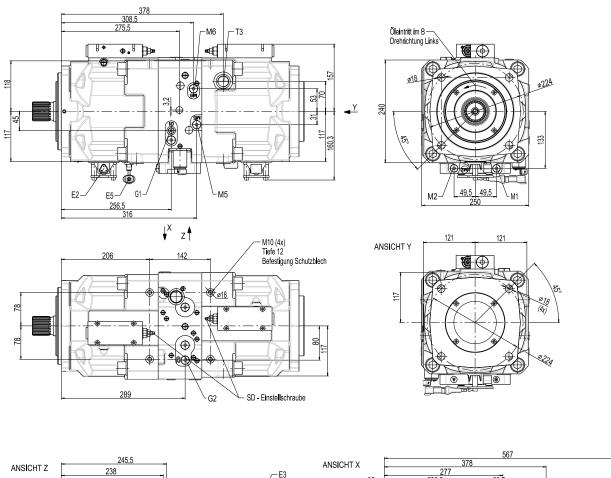
ISO 3019-2


31

DB-DMVA-D-02

5.3 NG 165-108, Wellenende

	DMVA			/			1	W		1	Α	0			
Ī	1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.


DIN 5480 Zahnwelle W45x2x21x9g

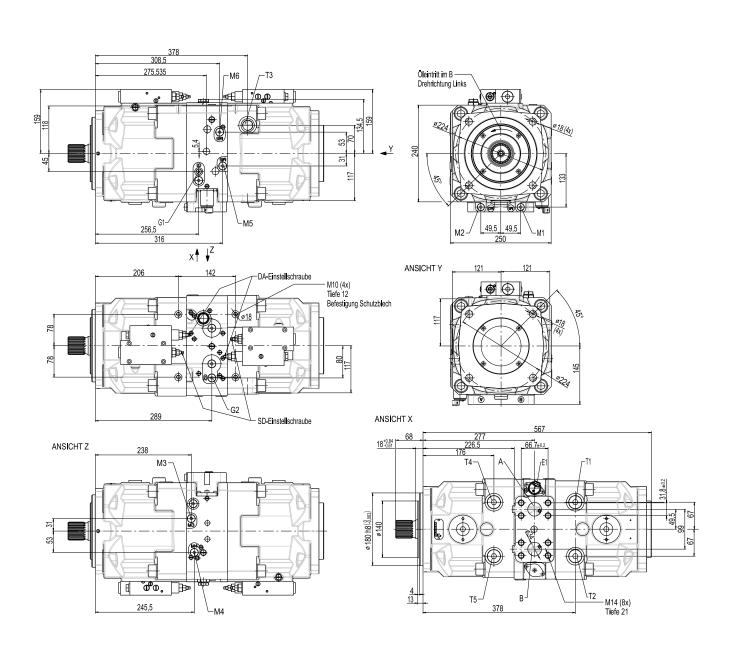
5.4 NG 165-165

5.4.1 NG 165-165, Regelungsart EL- und EL1-Regelung

Stelle des Schwerpunktes

					567		
ANSICHT Z	245,5		ANSICHT X	378			
ANSIGHTZ	238	∕–E3		277			
	M3¬	/	18 +0,84	226,5	1 1 66,7±0,2		
	<u> </u>	<u> </u>	10 -0,61	176 A-	\	<u>/</u> -T1	
				T4 —		/	
							# 07
			, 				31,8±02
1		the last the second sec	1 1 1 1		₩₩		
			-ES 67		10 TO		22
≅ ■ 1	₩ +						[위
	 	+	조 2		+ +++++++++++++++++++++++++++++++++++++		 8 +
- ⁵² = ₹1			ø180 h8(\$003) ø140 67		♦ ¾ ♦		29
			. I		# I () I		'
		H FQ	. ' ' ' 		₩ ₩ ₩		
		<u>`</u>	-				
		⊞ •• • • • • • • • • • • • • • • • • •	4.	T5_	_B /	\ \ _	
		4	13_		B	\ LT2	
	<u>\</u> M4			18			
						M14 (8x) Tiefe 21	
						Hele Z I	

E1	DRE / AMP Junior Timer 2-polig, PWM= 100Hz, Un= 24V, I _{max.} = 750 mA
A/B	Arbeitsanschluss SAE J518-1 1/4", 6000 psi


T1/T2/T3 T4 / T5	Leckölanschluss ISO 9974-1, M26x1.5
M4 / M6	Messan. Stelldruck ISO 9974-1, M14x1.5

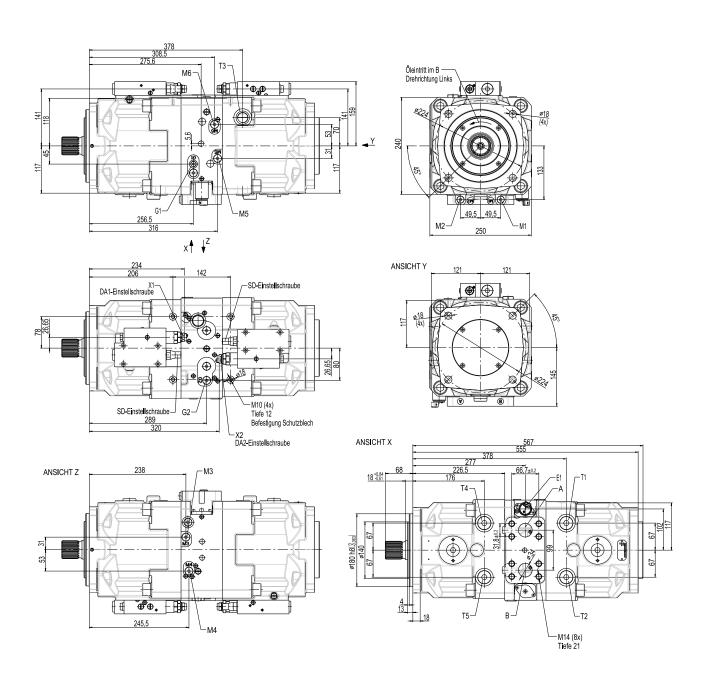
M1 / M2	Messan. Hochdruck ISO 9974-1, M12x1.5
M3 / M5	Messan. Steuerdruck ISO 9974-1, M14x1.5

G1	Stelldruckversorgung ISO 9974-1, M14x1.5
G2	Hilfsdruck ISO 9974-1, M14x1.5

5.4.2 NG 165-165, Regelungsart EL-DA

Stelle des Schwerpunktes

A/B	Arbeitsanschluss SAE J518-1 1/4",
A/D	6000 psi


M4 / M6 Messan. Stelldruck ISO 9974-1, M1

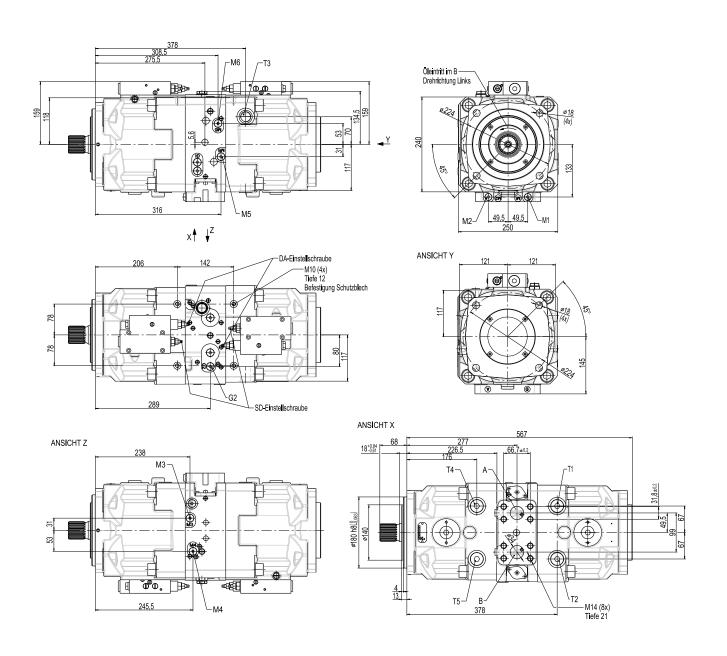
E1	DRE / AMP Junior Timer 2-polig, PWM= 100Hz, Un= 24V, I _{max.} = 750 mA
M1 / M2	Messan. Hochdruck ISO 9974-1, M12x1.5
M3 / M5	Messan. Steuerdruck ISO 9974-1, M14x1.5

T1/T2/T3 T4 / T5	Leckölanschluss ISO 9974-1, M26x1.5
G1	Stelldruckversorgung ISO 9974-1, M14x1.5
G2	Hilfsdruck ISO 9974-1, M14x1.5

5.4.3 NG 165-165, Regelungsart EL-DA1

Stelle des Schwerpunktes

A/B	Arbeitsanschluss SAE J518-1 1/4",
A / D	6000 psi

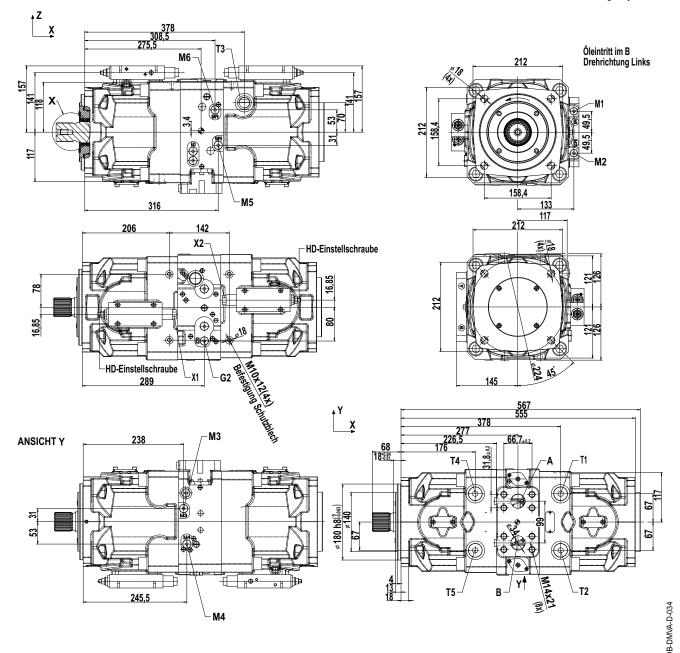

	DB-DMVA-D-016
G1	Stelldruckversorgung ISO 9974-1, M14x1.5

	M1 / M2	Messan. Hochdruck ISO 9974-1, M12x1.5
M3 / M5		Messan. Steuerdruck ISO 9974-1, M14x1.5
	El	DRE / AMP Junior Timer 2-polig, PWM= 100Hz, Un= 24V, I _{max.} = 750 mA
	M4 / M6	Messan. Stelldruck ISO 9974-1, M14x1.5

G2	Hilfsdruck ISO 9974-1, M14x1.5
X1 / X2	DA1-Übersteuerung ISO 9974-1, M12x1.5
T1/T2/T3 T4 / T5	Leckölanschluss ISO 9974-1, M26x1.5
-	-

5.4.4 NG 165-165, Regelungsart SD-DA

Stelle des Schwerpunktes

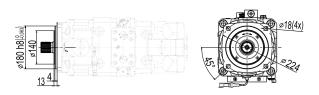


A/B	Arbeitsanschluss SAE J518-1 1/4", 6000 psi
M1 / M2	Messan. Hochdruck ISO 9974-1, M12x1.5
M3 / M5	Messan. Steuerdruck ISO 9974-1, M14x1.5

T1/T2/T3 T4 / T5	Leckölanschluss ISO 9974-1, M26x1.5
M4 / M6	Messan. Stelldruck ISO 9974-1, M14x1.5
G2	Hilfsdruck ISO 9974-1, M14x1.5

5.4.5 NG 165-165, Regelungsart HD

Stelle des Schwerpunktes center of gravity location

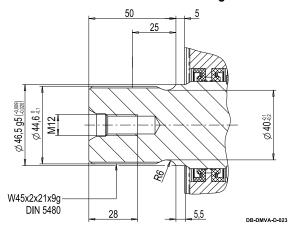

A/B	Arbeitsanschluss SAE J518-1 1/4", 6000 psi
M1 / M2	Messan. Hochdruck ISO 9974-1, M12x1.5
M3 / M5	Messan. Steuerdruck ISO 9974-1, M14x1.5

T1/T2/T3 T4 / T5	Leckölanschluss ISO 9974-1, M26x1.5
M4 / M6	Messan. Stelldruck ISO 9974-1, M14x1.5
G2	Hilfsdruck ISO 9974-1, M14x1.5

5.5 NG 165-165, Anbauflansch

	DMVA			/			1	W		1	Α	0			
Γ	1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.

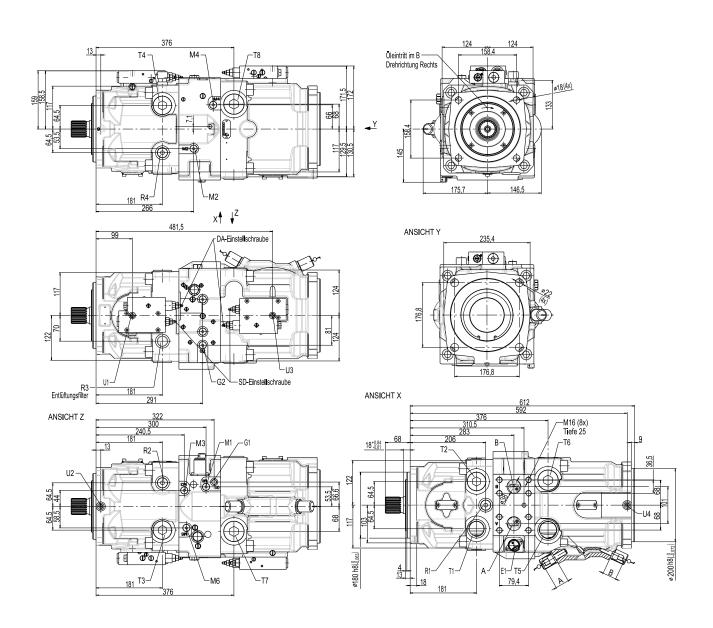
ISO 3019-2



DB-DMVA-D-022

5.6 NG 165-165, Wellenende

	DMVA			/			1	W		1	Α	0			
Ī	1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.


DIN 5480 Zahnwelle W45x2x21x9g

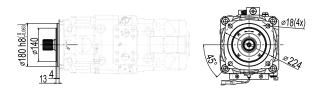
1

5.7 NG 165-215

5.7.1 NG 165-215, Regelungsart EL-DA

A/B	Arbeitsanschluss SAE J518-1 1/2", 6000 psi
M3	Messan. Steuerdruck ISO 9974-1, M14x1.5
R1 / R2 R3 / R4	Entlüftungsanschluss ISO 9974-1, M22x1.5

	DB-DMVA-D-020
M1 / M2	Messan. Hochdruck ISO 9974-1, M14x1.5
G2	Hilfsdruck ISO 9974-1, M14x1.5
T5 / T6 T7 / T8	Leckölanschluss ISO 9974-1, M48x2

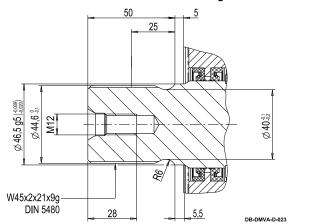

E1	DRE / AMP Junior Timer 2-polig, PWM= 100Hz, Un= 24V, I _{max.} = 750 mA
M4 / M6	Messan. Stelldruck ISO 9974-1, M14x1.5
G1	Stelldruckversorgung ISO 9974-1, M14x1.5

T1 / T2 T3 / T4	Leckölanschluss ISO 9974-1, M42x2
U1 / U2 U3 / U4	Spülanschluss ISO 9974-1, M12x1.5
-	-

5.8 NG 165-215, Anbauflansch

	DMVA			/			1	W		1	Α	0			
Ī	1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.

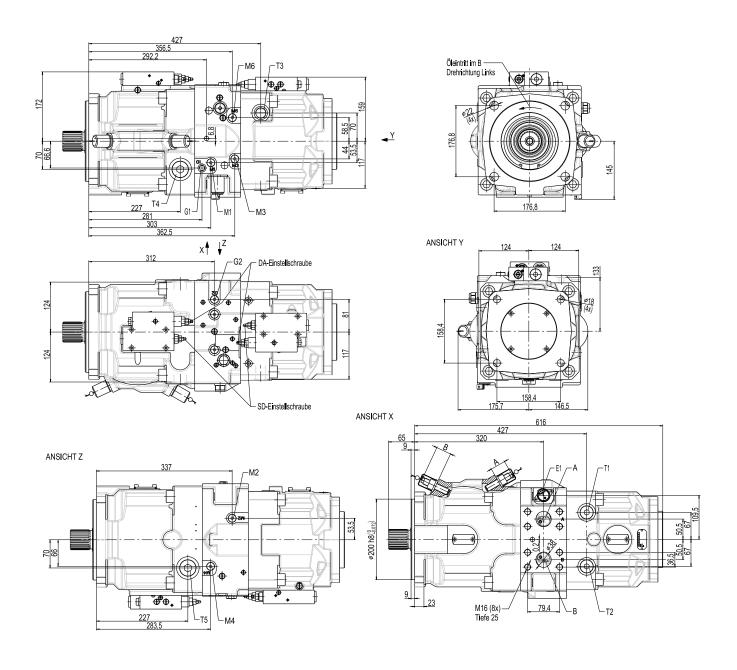
ISO 3019-2


31

DB-DMVA-D-02

5.9 NG 165-215, Wellenende

D	AVMC			/			1	W		1	Α	0			
	1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.


DIN 5480 Zahnwelle W45x2x21x9g

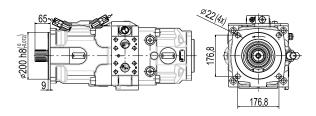
5.10 NG 215-165

5.10.1 NG 215-165, Regelungsart EL-DA

Stelle des Schwerpunktes

A/B	Arbeitsanschluss SAE J518-1 1/2", 6000 psi
M1 / M2	Messan. Hochdruck ISO 9974-1, M14x1.5
M3	Messan. Steuerdruck ISO 9974-1, M14x1.5

T4 / T5	Leckölanschluss ISO 9974-1, M33x2
G1	Stelldruckversorgung ISO 9974-1, M14x1.5
G2	Hilfsdruck ISO 9974-1, M14x1.5

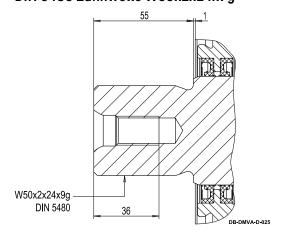

E1	DRE / AMP Junior Timer 2-polig, PWM= 100Hz, Un= 24V, I _{max.} = 750 mA
M4 / M6	Messan. Stelldruck ISO 9974-1, M14x1.5

T1 / T2 T3	Leckölanschluss ISO 9974-1, M26x1.5
-	-

5.11 NG 215-165, Anbauflansch

DMVA			/			1	W		1	Α	0			
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.

ISO 3019-2

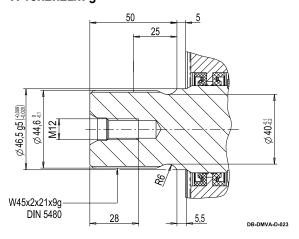

31

DB-DMVA-D-024

5.12 NG 215-165, Wellenende

DMVA			/			1	W		1	Α	0			
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.

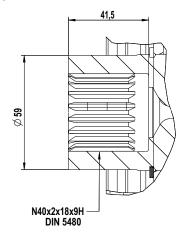
DIN 5480 Zahnwelle W50x2x24x9g



5.13 Durchtrieb DIN 5480

DMVA			/			1	W		1	Α	0			
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.

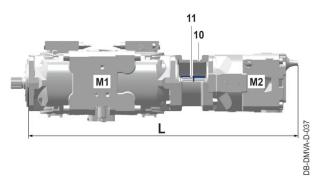
5.13.1 NG 165 Sonderdurchtrieb


W45x2x21x9g

K

5.13.2 NG 215 Sonderdurchtrieb

N40x2x18x9H


Κ

5.14 Mehrkreismotor in Tandembauweise

Allgemein

Auf Anfrage sind Mehrfach-Axialkolbeneinheiten inline, bestehend aus zwei oder mehr Einzeleinheiten realisierbar. In diesem Fall muss der Basis- Axialkolbendoppelmotor M1 durch eine Adapterplatte 10 und eine Kupplungshülse 11 mit einem weiteren Axialkolbenmotor M2 verbunden werden.

Der Typenschlüssel muss für jede Einzeleinheit separat ausgefüllt werden. Zur Identifikation der Mehrfacheinheit wird eine verkürzte Typenbezeichnung auf einem zusätzlichen Typenschild montiert.

Ml	Basis-Motor
M2	Anbau-Motor
L	Gesamtlänge Mehrkreismotor in mm

10	Adapter
11	Kupplungshülse
-	-

5.14.1 Abmessungen der Mehrkreismotor in Tandembauweise

Nenngröße M1	Nenngröße M2
	108
165-165	(L = 1018)

L = Gesamtlänge in mm

Änderungen, Bedingungen, Urheberrecht

Im Zuge der technischen Entwicklung behalten wir uns Änderungen ohne vorherige Ankündigung vor.

Alle Texte, Bilder, Grafiken, Tabellen oder sonstige Bilddarstellungen und deren Anordnung sind urheberrechtlich geschützt. Ohne ausdrückliche schriftliche Zustimmung der Liebherr Machines Bulle SA dürfen die Inhalte des Kataloges nicht kopiert, verbreitet, verändert oder Dritten zugänglich gemacht werden. Einige der in diesem Datenblatt angezeigten Bilder unterliegen dem Urheberrecht Dritter.

Der Verwender wird durch die Angaben in diesem Datenblatt nicht von seiner Pflicht zu eigenen Beurteilungen und Prüfungen entbunden. Die Inhalte werden mit größtmöglicher Sorgfalt erstellt. Dennoch kann keine Gewährleistung für die Richtigkeit, Vollständigkeit und Aktualität der mitgeteilten Informationen übernommen werden.

Im Datenblatt ist vorwiegend, und wenn nicht anders angegeben, eine Beispielkonfiguration abgebildet. Das ausgelieferte Produkt kann daher von der Abbildung abweichen. Abweichungen sind ebenfalls bei Daten und Werten möglich. Diese dienen nur der Vorauswahl der Produktkonfiguration und sind nicht verbindlich. Verwenden Sie deshalb die Werte aus der Ihnen gelieferten Einbauzeichnung.

Gewährleistungs- und Haftungsbedingungen der allgemeinen Geschäftsbedingungen des jeweiligen Liebherr Geschäftspartners werden durch vorstehende Hinweise nicht erweitert.

Die aktuellsten Versionen der Datenblätter von Liebherr finden Sie auf unserer Website unter https://www.liebherr.com.

Haben Sie Fragen? Kontaktieren Sie Ihren jeweiligen Ansprechpartner für weitere Informationen.